GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (1)
  • 1985-1989  (7)
  • 1975-1979  (6)
Publikationsart
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Buch
    Buch
    Lawrence, Kan.
    Materialart: Buch
    Seiten: IX, 629 S. , überw. Ill., graph. Darst.
    ISBN: 0935868135
    DDC: 593.1012
    Sprache: Englisch
    Anmerkung: Literaturangaben
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 24 (1977), S. 0 
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: SYNOPSIS. Euplotes vannus, a hypotrich ciliate. grows well over broad ranges of temperature and salinity. It requires higher densities of food (〉 1 × 104 cells/ml) for rapid reproduction than do the other herbivores, the foraminiferan Al-logromia laticollaris (〉 1 × 102 cells/ml), and the nematode Chromadorina germanica (∼ 1 × 103 cells/ml), to which it was compared. If food levels were initially very high (∼ 1 × 108 cells/ml) the ciliates reproduced rapidly and consumed the algae faster than it could reproduce. Some balance between the algae and the ciliates was achieved at initial algal concentrations of ∼ 1 × 105 cells/ml. In microcosm experiments at 25 C with equal numbers of C. germanica and A. laticollaris. E. vannus proved to be a very poor competitor; reaching only 20% of control levels when grow with C. germanica and only 13% when cultured with A. laticollaris. It was a better competitor in 2-species microcosms, at lower temperatures, and when its ratio to the other species was initially higher.The experimental evidence suggests that E. vannus is best adapted to being a migrating initial colonizer of fresh algal blooms.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 503 (1987), S. 0 
    ISSN: 1749-6632
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Allgemeine Naturwissenschaft
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 503 (1987), S. 0 
    ISSN: 1749-6632
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Allgemeine Naturwissenschaft
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 24 (1977), S. 0 
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 23 (1976), S. 0 
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: SYNOPSIS. The life cycles of 3 strains of Allogromia laticollaris, a monothalamous foraminiferan, have been studied. Each of the strains had a different, nonclassical, and basically apogamic, life cycle. The Cold Spring Harbor (CSH) strain regularly alternated between 2 agamontic forms: agamont I (uninucleate and diploid) and agamont II (multinucleate and diploid). The complete life cycle took 26 days. Sexual reproduction was rare (0.01%) and autogamous. Small numbers of organisms also underwent budding, binary fission, and cytotomy. The life cycles of the Towd Point (TPA) and Sippewissett (SIP) strains were comparatively abbreviated. Agamont II dominated their typical life cycles, which were completed in 16-18 days. The life cycle of SIP was basically a continuous cycling of the agamont II phase. Approximately 75% of the schizozoites of the TPA strain developed into agamont II. The other 25% alternated between agamont II and agamont I phase.In the CSH strain schizozoites with ∼ 8 (range 5-15) nuclei characterized newly formed agamonts II. More nuclei (∼ 25) were found in the other 2 strains. The nuclei in young agamonts II underwent rapid morphologic changes leading to a “mushroom-like” chromosome appearance and extensive RNA synthesis. Nucleolar material accumulated at the nuclear periphery and eventually was discharged to the cytoplasm. Karyokinesis took place without the breakdown of the nuclear membrane.The single nucleus of young agamont I forms was proportionally quite large. The S1 phase occurred quite early (2-5 days) in this part of the life cycle. RNA in the CSH strain formed a compact, subcortical, coarsely granular ring, while in the TPA it was cortical and differentiated into finely granular matrix with randomly distributed coarse granules. During the G2 phase the nucleus became further enlarged and eventually amoeba-form. Intermediate stages in nuclear breakdown were not found.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 32 (1985), S. 0 
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: .Attention, perhaps overdue, is drawn to the extent and significance of endosymbionts (xenosomes sensu lato) in the cytoplasm and nuclei of many protozoa from diverse taxonomic groups. Even more importantly, recent advances in the study of such intimate associations are reviewed and discussed and their impact on broader problems of cell biology and evolution are stressed. Workers inside and especially outside the fields of protozoology and parasitology have often neglected such data, failing to appreciate their relevance to significant problems in their own fields of investigation. The major topics covered by speakers in the Symposium (to which this paper serves only as an introduction) include the following, in order of their presentation: terminology for the symbiont-host relationship and a brief overview of the field; the evolutionary problem of the origin of contemporary associations, including cell organelles such as mitochondria and plastids; the adaptive value of endosymbionts to their protozoan hosts; mechanisms of establishment, maintenance, and integration of such foreign bodies/invaders in their unicellular eukaryotic host cells; and the extent of algal and bacterial endosymbioses in diverse protozoan groups. In all papers, the principal relatively well studied complexes used as examples are the following: various kinds of algae in the larger foraminifera and in ciliates, radiolarians, and acantharians; the several types of bacteria in the cytoplasm of Amoeba and of Pelomyxa; the endonuclear bacterial symbionts of Paramecium; the cytoplasmic prokaryotes in Paramecium and in Parauronema; and the methanogenic bacteria of certain ciliates.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 32 (1985), S. 0 
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: .Protozoa may be thought of as preadapted to serve as hosts for cellular endosymbionts by virtue of their widespread ability to take up particles by endocytosis. The absence of the cell wall so characteristic of plants and fungi and the commonly large size of most protozoa are additional factors favoring protozoan cells for endosymbioses. The conversion of symbiont into a cellular organelle (e.g. a mitochondrion or chloroplast) is more complicated, especially since the latter do not code for all of their own proteins. Thus, such conversions are held to be rare. Among protozoa, numerous foraminifera appear to have characteristics making them very favorable as hosts for certain algae. Such adaptations, both physiological and morphological in nature, are discussed. Also discussed in this paper are the ways by which (present-day) chloroplasts and mitochondria may have been derived from early endosymbionts: a single ancestral cyanobacterium, in the first case, and a single ancestral purple-nonsulfur bacterium, in the second. Mechanisms for insertion of proteins into and across the organellar membranes had to be evolved for all genes transferred from the symbionts into the host nucleus.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 32 (1985), S. 0 
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: .It is generally accepted that in symbiotic systems involving algal species as cellular endobionts there is some positive benefit to the host organisms. In this paper special consideration is given to the larger foraminifera, protozoa that serve as very useful model systems for the study of aspects of inter/intracellular integration and adaptation—living, as they do, in nutrient-limited but well illuminated shallow tropical seas and containing endosymbiotic algae in abundance. A considerable amount of information is now available on physiological as well as morphological adaptations of the host species to pigmented protists representing diverse algal divisions (phyla). Brief mention is also made of bacterial endosymbionts of certain ciliates.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 23 (1976), S. 0 
    ISSN: 1550-7408
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: SYNOPSIS. It was demonstrated with the aid of light and electron microscope studies that Sorites marginalis (Lamarck) harbors zooxanthellae. The hosts were scraped from Thalassia testudinum Konig growing in Key Largo Sound (Florida, U.S.A.) and immediately preserved in appropriate fixatives. Zooxanthellae were distributed unevenly throughout all the chamberlets; only a few symbiotes were found in the embryonic chambers and the inner or outer chambers, but the intermediate chambers were packed with symbiotes. The outer chambers contained many food vacuoles in addition to symbiotes. Some zooxanthellae might have been in the process of degeneration or digestion. The symbiotes were found to have a typical dinoflagellate nucleus, a single large lobate cortical chloroplast with one stalked pyrenoid, an accumulation body, and many starch granules. The nonmotile stage of the zooxanthella was similar, but perhaps not identical, to Symbiodinium microadriaticum Freudenthal from various hosts.The foraminiferan host is heterokaryotic with hundreds of generative (small) nuclei and scores of vegetative (large) nuclei. Most of the generative nuclei were found in the embryonic apparatus and the inner chambers. Most of the vegetative nuclei were found in the inner and outer chambers.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...