GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 192 (1994), S. 446-452 
    ISSN: 1432-2048
    Keywords: Chromatin ; Generative nucleus ; Histone ; Lilium ; Nuclear differentiation ; Pollen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A method has been developed for the efficient isolation of “generative” and “vegetative” nuclei from the generative and vegetative cells, respectively, of pollen grains of Lilium longiflorum Thunb. First, large numbers of pollen protoplasts were isolated enzymatically from nearly mature pollen grains. After the protoplasts had been gently disrupted by a mechanical method, the generative cells could be separated from the other pollen contents, which included vegetative nuclei. The generative nuclei were isolated by suspending the purified generative cells in a buffer that contained a non-ionic deter gent. The isolated generative nuclei, like those within pollen grains, had highly condensed chromatin and the isolated material was without contamination by vegetative nuclei. When basic proteins, extracted from the preparation of generative nuclei by treatment with 0.4 N H2SO4, were compared with those from preparations of somatic and vegetative nuclei by two-dimensional gel electrophoresis, it was revealed that at least five proteins with apparent molecular masses of 35, 33, 22.5, 21 and 18.5 kDa (p35, p33, p22.5, p21 and p18.5), respectively, were specific for, or highly concentrated in, the generative nuclei. An examination of solubility in 5% perchloric acid and the mobility during electrophoresis indicated that two of these proteins (p35 and p33) resembled H1 histones while the three other proteins (p22.5, p21 and p18.5) resembled core histones. It is likely that these basic nuclear proteins are related to the condensation of chromatin or to the differentiation of male gametes in flowering plants, as is the case for analogous proteins present during spermatogenesis in animals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: A-factor ; Streptomyces griseus ; Streptomycin biosynthesis ; Streptomycin resistance ; Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) is a microbial hormone controlling streptomycin (Sm) production, Sm resistance and sporulation in Streptomyces griseus. In order to identify A-factor-dependent promoters in the Sm biosynthetic gene cluster, a new promoter-probe plasmid with a low copy number was constructed by using an extremely thermostable malate dehydrogenase gene as the reporter. Of the three promoters in the Sm production region that includes strR, aphD and strB, only the promoter of strR, which codes for a putative regulatory protein, was found to be directly controlled by A-factor. This was also confirmed by S1 nuclease mapping. The region essential for its A-factor-dependence was determined to be located 430–330 base pairs upstream of the transcriptional start point. Increase in the copy number of the strR promoter region did not lead to a corresponding increase in the total promoter activity, probably due to titration of a putative activator which binds to the enhancer-like region and controls the expression of the strR promoter. This putative activator is apparently distinct from the A-factor-receptor protein. The aphD gene, which encodes the major Sm resistance determinant, Sm-6-phosphotransferase, was transcribed mainly by read-through from the A-factor-dependent strR promoter; this accounts for the prompt induction of Sm resistance by A-factor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...