GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European food research and technology 194 (1992), S. 259-262 
    ISSN: 1438-2385
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Description / Table of Contents: Summary Volatiles from the edible part of kohlrabi (Brassica oleracea var.gongylodes) were isolated by means of a dynamic headspace sampling device and separated by capillary gas chromatography. For identification samples were subjected to element-specific detection (Flame photometric and nitrogen-phosphorus detectors) and mass spectral analyses. Major volatile products are: 3-methylthiopropyl, 4-methylthiobutyl and allyl isothiocyanate. The two corresponding organic cyanides 3-methylthiopropyl and 4-methylthiobutyl cyanides and dimethyl, trimethyl and tetramethyl disulphides are also present in higher amounts.n-Nonenal, (E)-2-hexenal, (E,E)-2,4-heptadienal and some isothiocyanates of unknown structure appear in the volatile fraction as minor constituents. The sulphur- and nitrogen-containing components could be related to the enzymic cleavage (myrosinase) of glucosinolates, naturally occurring precursors in brassica plants. Some of the volatile products possess antimicrobial and antithyroid effects and have been identified in different plants of the cruciferae family. The possible role of the isothiocyanates, cyanides, sulphides and aldehydes to the flavour of kohlrabi is discussed.
    Notes: Zusammenfassung Die flüchtigen Inhaltsstoffe des Kohlrabi (Brassica oleracea var.gongylodes L.) wurden mittels der dynamischen Kopfraum-Technik isoliert und anschligßend gaschromatographisch aufgetrennt. Unter Anwendung elementspezifischer Detektoren (FPD, NPD) und Massenspektrometrie erfolgte deren Identifizierung. Zu den Hauptkomponenten gehören: 3-Methylthiopropyl-,4-Methylthiobutyl- und Allyrisothiocyanat. Die beiden korrespondierenden organischen Cyanide 3-Methylthiopropyl- und 4-Methylthiobutyl-cyanid sowie Dimethyldisulfid, Dimethyltrisulfid und Dimethyl-tetrasulfid erscheinen ebenfalls in gröσBeren Mengen. In geringerer Konzentration treten nochn-Nonenal, (E)-2-Hexenal, (E,E)-2,4-Heptadienal und einige Isothiocyanate unbekannter Struktur in den Extrakten auf. Die schwefel- und stickstoffhaltigen Komponenten sind auf die enzymatische Spaltung (Myrosinase) der inBrassica-Arten vorhandenen Glucosinolate zurückzuführen. Einige der identifizierten Stoffe zeigen antimikrobielle und antithyroide Eigenschaften und wurden in verschiedenen Cruziferenarten nachgewiesen. Die mögliche Bedeutung der Isothiocyanate, Cyanide, Sulfide und Aldehyde für das Kohlrabiaroma wird diskutiert.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1436-2813
    Keywords: orthotopic liver transplantation ; hepatic metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The hepatocellular metabolic change after liver transplantation following 2 hr cold ischemia was investigated. Of 55 orthotopic liver transplantations in male Wistar rats, 47 animals were sacrificed at 3 hr, and 1, 2, 7 and 30 days to determine hepatic metabolite levels, in the form of adenine nucleotides, lactate and glycogen. Using the other 8 recipients, biochemical examinations were done at 1, 3, 5, 7, 30 and 60 days and metabolic levels estimated at 60 days. The SGOT and SGPT levels decreased gradually after a remarkable increase on the first postoperative day, while the alkaline phosphatase level revealed a peak value at 30 days. All levels recovered to within the normal range in 60 days. The total adenine nucleotide level reached the normal range within 3 hr following the blood reflow and remained at a normal level thereafter. However, all the metabolic levels apart from total adenine nucleotides deteriorated to reach their worst level at 7 days. The results of this investigation indicate that the posttransplanted deterioration of metabolic levels were possibly caused by the imperfect oxygenation due to cellular edema after blood reflow. However, the levels of these metabolites recovered within 60 days after transplantation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    GeoJournal 32 (1994), S. 61-70 
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract The influence of aerosols in the visible and near infrared part of the electromagnetic spectrum was studied by simulations of Landsat 5 Thematic Mapper measurements. The radiative transfer model used is based on the matrix-operator-method and was applied to different surface types, represented by specific spectral albedo values. On the basis of a single scattering approach for atmospheric correction, an algorithm was developed to correct for the influences of aerosols, air molecules and athmospheric trace gases on Thematic Mapper measurements above land surfaces using additional measurements above nearby located ocean surfaces to estimate the optical properties. The optical thickness of a cloud-free atmosphere has therefore been varied in the model for different aerosol types and surface reflectances.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: cysteine proteinase ; cDNA ; Vicia sativa L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract cDNA clones encoding cysteine proteinases from cotyledons of germinated seeds of Vicia sativa L. have been obtained by means of PCR. Degenerate oligonucleotide primers were designed according to conserved amino acid regions of known cysteine proteinases. The deduced amino acid sequences of the cDNA clones encoding VSCYSPR1 and VSCYSPR2 display strong homology to cysteine proteinases of the so called papain superfamily. Northern analyses revealed developmentally regulated expression of both the mRNAs in germinating seeds. The transcripts were shown to be products of two distinct single genes, each exhibiting structural polymorphisms as exposed in few nucleotide substitutions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C8). p. 14353.
    Publication Date: 2018-01-22
    Description: Current measurements from two consecutive yearlong deployments of three moored stations at the western end of the equator in the Atlantic, along 44°W, are used to determine the northwestward flow of warm water in the upper several 100 m and of the southeastward counterflow of North Atlantic Deep Water (NADW). Measurements from three acoustic Doppler current profilers (ADCPs) looking upward from 300 m toward the surface allowed calculation of a time series of upper layer transports over 1 year. Mean transport through the array for the upper 300 m is 23.8 Sv with an annual cycle of only ±3 Sv that has its maximum in June-August and minimum in northern spring. Estimated additional mean northwestward transport in the range 300–600 m is 6.7 Sv, based on moored data and shipboard Pegasus and lowered ADCP profiling. In the depth range 1400–3100 m a current core with maximum annual mean southeastward speed of 30 cm s−1 is found along the continental slope that carries an estimated upper NADW transport of 14.2–17.3 Sv, depending on the extrapolation used between the mooring in the core and the continental slope. This transport is higher than off-equatorial estimates and suggests near-equatorial recirculation at the upper NADW level, in agreement with northwestward mean flow found about 140 km offshore. Below 3100 m and above the 1.8°C isotherm, only a small core of lower NADW flow with speeds of 10–15 cm s−1 is found over the flat part of the basin near 1.5°N, clearly separated from the continental slope by a zone of near-zero mean speeds. Estimated transport of that small current core is about 4.5 Sv, which is significantly below other estimates of near-equatorial transport of lower NADW and suggests that a major fraction of lower NADW may cross the 44°W meridian north of the Ceara Rise. Intraseasonal variability is large, although smaller than observed at 8°N near the western boundary. It occurs at a period of about 1 month when it is dominant in the near-surface records and corresponds to earlier observations in the equatorial zones of all oceans and at a period of about 2 months when it is dominant at the NADW level and could be imported either from the north along the boundary or from the east along the equator. The existence of an annual cycle in the deep currents of a few centimeters per second amplitude, as suggested by high-resolution numerical model results, could neither be proven nor disproven because of the high amount of shorter-period variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 99 (C12). p. 25127.
    Publication Date: 2018-06-15
    Description: The zonal monsoon circulation south of India/Sri Lanka is a crucial link for the exchange between the northeastern and the northwestern Indian Ocean. The first direct measurements from moored stations and shipboard profiling on the seasonal and shorter‐period variability of this flow are presented here. Of the three moorings deployed from January 1991 to February 1992 along 80°30′E between 4°11′N and 5°39′N, the outer two were equipped with upward looking acoustic Doppler current profilers (ADCPs) at 260‐m depth. The moored and shipboard ADCP measurements revealed a very shallow structure of the near‐surface flow, which was mostly confined to the top 100 m and required extrapolation of moored current shears toward the surface for transport calculations. During the winter monsoon, the westward flowing Northeast Monsoon Current (NMC) carried a mean transport of about 12 Sv in early 1991 and 10 Sv in early 1992. During the summer monsoon, transports in the eastward Southwest Monsoon Current (SMC) were about 8 Sv for the region north of 3°45′N, but the current might have extended further south, to 2°N, which would increase the total SMC transport to about 15 Sv. The circulation during the summer was sometimes found to be more complicated, with the SMC occasionally being separated from the Sri Lankan coast by a band of westward flowing low‐salinity water originating in the Bay of Bengal. The annual‐mean flow past Sri Lanka was weakly westward with a transport of only 2–3 Sv. Using seasonal‐mean ship drift currents for surface values in the transport calculations yielded rather similar results to upward extrapolation of the moored profiles. The observations are compared with output of recent numerical models of the Indian Ocean circulation, which generally show the origin of the zonal flow past India/Sri Lanka to be at low latitudes and driven by the large‐scale tropical wind field. Superimposed on this zonal circulation is local communication along the coast between the Bay of Bengal and the Arabian Sea
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C8). pp. 14401-14421.
    Publication Date: 2018-03-22
    Description: During the winter of 1988–1989 five acoustic Doppler current profilers (ADCPs) were moored in the central Greenland Sea to measure vertical currents that might occur in conjunction with deep mixing and convection. Two ADCPs were looking up from about 300 m and combined with thermistor strings in the depth range 60–260 m, two were looking downward from 200 m, and one was looking upward from 1400 m. First maxima of vertical velocity variance occurred at two events of strong cold winds in October and November when cooling and turbulence in the shallow mixed layer generated internal waves in the thermocline. Beginning in late November the marginal ice zone expanded eastward over the central Greenland Sea, reaching its maximum extent in late December. In mid-January a bay of ice-free water opened over the central Greenland Sea, leaving a wedge of ice, the “is odden,” curled around it along the axis of the Jan Mayen Current and then northeastward and existing well into April 1989. Below the ice a mixed layer at freezing temperatures developed that increased in thickness from 60 to 120 m during the period of ice cover, corresponding to an average heat loss of about 40 W m−2. Through brine rejection, mixed-layer salinity increased steadily, reducing stability to underlying weakly stratified layers (Roach et al., 1993). During the ice cover period, vertical currents were at a minimum. After the opening of the ice-free bay, successive mixed-layer deepening to 〉350 m occurred in conjunction with cooling events around February 1 and 15, accompanied by strong small-scale vertical velocity variations. Upward mixing of more saline waters of Atlantic origin during this phase reduced the stability further, generating a pool of homogeneous water of 〉50 km horizontal extent in the central Greenland Sea, preconditioned for subsequent convection to greater depths. Individual convection events were observed during March 6–16, associated with downward velocities at the 1400-m level of about 3 cm s−l. One event was identified as a plume of about 300-m horizontal scale, in agreement with recently advanced scaling arguments and model results, and with earlier similar observations in the Gulf of Lions, western Mediterranean. The deep convection occurred in the center of the ice-free bay; hence brine rejection did not seem necessary for its generation. Plume temperatures at 1400 m were generally higher than that of the homogeneous surface pool, suggesting entrainment of surrounding warmer waters on the way down. Mean vertical velocity over a period of convection events was indistinguishable from zero, suggesting that plumes served as a mixing agent rather than causing mean downward transport of water masses. However, different from the surface pool that was governed by mixed-layer physics, the water between 400 and 1400 m was not horizontally homogenized in a large patch by the sporadic plumes. Overall, and compared to results from the Gulf of Lions, convection activity in the central Greenland Sea was weak and limited to intermediate depths in winter 1988–1989.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 10 (5). pp. 764-773.
    Publication Date: 2020-08-04
    Description: Ocean deep velocity profiles were obtained by lowering a self-contained 153.6-kHz acoustic Doppler current profiler (ADCP) attached to a CTD-rosette sampler. The data were sampled during two Meteor cruises in the western tropical Atlantic. The ADCP depth was determined by integration of the vertical velocity measurements, and the maximum depth of the cast was in good agreement with the CTD depth. Vertical shears were calculated for individual ADCP velocity profiles of 140-300-m range to eliminate the unknown horizontal motion of the instrument package. Subsequent raw shear profiles were then averaged with respect to depth to obtain a mean shear profile and its statistics. Typically, the shear standard deviations were about 10(-3) s-1 when using up and down traces simultaneously. The shear profiles were then vertically integrated to get relative velocity profiles. Different methods were tested to transform the relative velocities into absolute velocity profiles, and the results were compared with Pegasus dropsonde measurements. The best results were obtained by integrating the raw velocities and relative velocities over the duration of the cast and correcting for the ship drift determined from the Global Positioning System. Below 1000-m depth a reduction of the measurement range was observed, which results either from a lack of scatterers or instrumental problems at higher pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 40 (8). pp. 1547-1557.
    Publication Date: 2016-10-19
    Description: Moored Acoustic Doppler Current Profilers (ADCPs) were used to analyse the daily vertical zooplankton migration and its seasonality. One-year records of vertical velocity and acoustic backscatter were obtained at four stations in the Greenland Sea. Both parameters exhibited a diurnal cycle typical for vertically migrating zooplankton. Upward and downward migration occured in short periods approximately 5 h long, and peak migration velocities were around 1.5 cm s−1. Similar structures were observed at all four mooring sites in the 200–300 m depth range. Farther down, between 1000 and 1400 m, no daily migration was observed. Strong seasonal variations are evident, and both the phase and intensity of the migration pattern change with daylight as the season progresses. In summer and during the polar night the migration became very weak and was only detectable in the displacement of scattering layers. When the day/ night contrast was large, intense upward or downward motion was accompanied by sloping backscatter isopleths. We observed two main scattering layers, a deep layer that varies in depth with season and an almost invariable shallow scattering layer at about 150 m depth. The deep layer was interpreted as the “resting depth” of the migrating plankter, and the latter as their “feeding horizon”. Changes in the “resting depth” from about 400 m in autumn and spring to about 200 m in winter lead to seasonal variations in the migration distance. This behaviour is discussed with respect to environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...