GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • Blackwell Publishing Ltd  (1)
  • 1990-1994  (3)
Document type
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 116 (1994), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We present the computational concept and first results of an automated 2-D ray-tracing algorithm which combines the standard ray method with the method of edge waves and paraxial ray tracing. Reliable ray synthetic seismograms are obtained for subsurface structures of high complexity. Both diffracted and multiple diffracted arrivals are automatically computed, complementing all types of primary arrivals (reflected, multiple reflected, converted waves, etc.) where geometric shadow zones are caused by edges (inhomogeneities) in the subsurface model. The method of computation can be summarized as follows: (1) during standard ray tracing, properties of central and paraxial rays are computed for a set of neighbouring rays. (2) Diffraction points (edges) are identified by comparing the amplitude and traveltime differences of neighbouring rays with the corresponding values of their paraxial approximation. (3) Detected edges are used as source points for diffracted rays. (4) Repetition of (1)-(3) for diffracted rays allows computation of multiple diffractions (‘diffracted diffractions’). (5) The amplitude decay of diffracted arrivals is computed according to the theory of edge waves. Its critical variables are expressed in terms of second-order paraxial traveltimes. The method is demonstrated for a simple and complex synthetic model and a real data complex model.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 176 (1-2). pp. 25-41.
    Publication Date: 2018-01-17
    Description: A seismic refraction profile across Langeland (Denmark) obtained from land stations recording airgun shots allowed to resolve upper crustal velocities to a depth of 8 km. The profile traverses the proposed Caledonian Deformation Front and the Ringkoebing-Fyn High. The Ringkoebing-Fyn High is about 10 km wide and the top basement lies less than 2 km below the surface. Basement velocities as high as 6.4 km/s, at depths between 6 and 8 km, can be best explained by compositional changes between adjoining basement units to the north and south. South of the Ringkoebing-Fyn High another high velocity basement unit is encountered and most probably represents a basement affected by the Caledonian orogeny. Along this profile on Langeland the positions of the Caledonian Deformation Front and the northern limit of the Zechstein deposits coincide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 173 (1-4). pp. 83-93.
    Publication Date: 2019-05-08
    Description: A deep Seismic reflection profile collected by DEKORP and BELCORP in the western Rhenish Massif was supplemented by wide-angle measurements. Signals from a vibrator source were successfully recorded to a distance of 60 km. A passive recording array was operated that recorded all shots along the profile. The wide-angle and near-vertical data were used to construct a velocity model for the profile. Most of the wide-angle reflections coincide with strong near-vertical reflections or bands of high reflectivity. The North Variscan Deformation Front, seen as a prominent shallow reflection on many profiles in this region, separates an upper crust with rather nigh velocities from a layer with lower velocities underneath. At a depth of 20–22 km a thin (2–3 km thick) layer of high velocities is found. The Moho is not reflective either in the near-vertical or in the wide-angle data, suggesting the presence of a thick crust-mantle transition zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...