GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Journal of Bacteriology Vol. 181, No. 3 ( 1999-02), p. 814-822
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 181, No. 3 ( 1999-02), p. 814-822
    Abstract: The phytopathogenic bacterium Pseudomonas syringae pv. glycinea PG4180.N9 causes bacterial blight of soybeans and preferably infects its host plant during periods of cold, humid weather conditions. To identify proteins differentially expressed at low temperatures, total cellular protein fractions derived from PG4180.N9 grown at 18 and 28°C were separated by two-dimensional gel electrophoresis. Of several proteins which appeared to be preferentially present at 18°C, a 40-kDa protein with an isoelectric point of approximately 5 revealed significant N-terminal sequence homology to morphinone reductase (MR) of Pseudomonas putida M10. The respective P. syringae gene was isolated from a genomic cosmid library of PG4180, and its nucleotide sequence was determined. It was designated ncr for NAD(P)H-dependent 2-cyclohexen-1-one reductase. Comparison of the 1,083-bp open reading frame with database entries revealed 48% identity and 52% similarity to the MR-encoding morB gene of P. putida M10. The ncr gene was overexpressed in Escherichia coli , and its gene product was used to generate polyclonal antisera. Purified recombinant Ncr protein was enzymatically characterized with NAD(P)H and various morphinone analogs as substrates. So far, only 2-cyclohexen-1-one and 3-penten-2-one were found to be substrates for Ncr. By high-pressure liquid chromatography analysis, flavin mononucleotide could be identified as the noncovalently bound prosthetic group of this enzyme. The distribution of the ncr gene in different Pseudomonas species and various strains of P. syringae was analyzed by PCR and Southern blot hybridization. The results indicated that the ncr gene is widespread among P. syringae pv. glycinea strains but not in other pathovars of P. syringae or in any of the other Pseudomonas strains tested.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 64, No. 9 ( 1998-09), p. 3180-3187
    Abstract: Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae , Erwinia amylovora , and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3.0-kb Pst I fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc . Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based P lac promoter, indicating that the native promoter of lsc was not functional in E. coli . Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli . A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 1998
    In:  Journal of Basic Microbiology Vol. 38, No. 1 ( 1998-03), p. 41-50
    In: Journal of Basic Microbiology, Wiley, Vol. 38, No. 1 ( 1998-03), p. 41-50
    Type of Medium: Online Resource
    ISSN: 0233-111X , 1521-4028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 1998
    detail.hit.zdb_id: 1480967-9
    detail.hit.zdb_id: 632513-0
    detail.hit.zdb_id: 203025-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 180, No. 6 ( 1998-03-15), p. 1360-1367
    Abstract: The plant-pathogenic bacterium Pseudomonas syringae pv. glycinea PG4180.N9 synthesizes high levels of the polyketide phytotoxin coronatine (COR) at 18°C, whereas no detectable toxin is produced at 28°C. Previously, we reported that the temperature-sensitive activation of three promoters within the COR biosynthetic gene cluster might explain thermoregulation of COR biosynthesis. The present study was aimed at furthering our understanding of the transcriptional as well as the posttranslational effects of temperature on expression of cmaB , which encodes an enzyme involved in COR biosynthesis. Transcriptional fusions using a promoterless glucuronidase gene and Northern blot analyses were used to monitor promoter activities and transcript abundance for the cmaABT operon during bacterial growth at 18 and 28°C. Promoter activity and transcription rates were maximal when cells were incubated at 18°C and sampled at mid-logarithmic phase. Transcription declined moderately during the transition to stationary phase but remained higher at 18°C than at 28°C. Western blot analysis indicated that CmaB accumulated in the late stationary phase of P. syringae cultures grown at 18°C but not in cultures incubated at 28°C. Temperature shift experiments indicated that CmaB stability was more pronounced at 18°C than at 28°C. Although temperature has a strong impact on transcription of COR biosynthetic genes, we propose that thermoregulation of protein stability might also control COR synthesis.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...