GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (8)
  • 1
    facet.materialart.
    Unknown
    In:  Sailing-Journal, 1 . pp. 91-93.
    Publication Date: 2016-09-13
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Universität Bremen
    In:  [Poster] In: Biogeochemical Cycles: German contribution to International JGOFS, 18.-21.09.2000, Bremen, Germany . Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen ; pp. 32-33 .
    Publication Date: 2019-09-11
    Description: We observed variations in primary nutrients and phytoplankton biomass in an upwelling event off Oman during the strong SW-monsoon 1997. A so called filament, originating in the coastal upwelling, was tracked, marked with a drifter and followed for 19 days while intensive water sampling took place. The first stations in this upwelling event showed a severe silicate limitation. With the silicate limitation a diverse diatom community vanished. Although after a couple of days new silicate became available, another phytoplankton community of smaller organisms 〈 20 flm) with nearly no diatoms bloomed. These results raise fundamental questions about the interactions between silicate limitation and the control of carbon export in the worlds most productive areas. It is discussed, whether these limitation events might be typical short term features of coastal upwelling ecosystems, not described as yet.
    Type: Conference or Workshop Item , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Paper] In: 8. JGOFS-Workshop, 02.-03.12.1999, Bremen, Germany . Bericht über den 8. JGOFS-Workshop am 2. und 3.12.1999 in Bremen. Im Anhang: Publikationen zum deutschen Beitrag zur Joint Global Ocean Flux Study (JGOFS), Stand 1/2000 ; pp. 46-47 .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Paper] In: Biogeochemical Cycles: German Contributions to the International Joint Global Ocean Flux Study, 18.-21.09.2000, Bremen, Germany .
    Publication Date: 2020-05-27
    Type: Conference or Workshop Item , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-22
    Description: Concentrations of a cyanobacterial toxin, nodularin, were measured in the Baltic Sea in 1998 and 1999. Statistical associations of nodularin concentrations with environmental factors were tested by multiple regression analysis. To reveal the toxin-producing organism, colonies of Aphanizomenon and filaments of Nodularia were picked and analyzed for peptide toxins. It was also investigated whether there was an association with zooplankton and Nodularia. All the measured seston samples contained nodularin, but other toxins were not detected by the HPLC analysis. In both years, the highest nodularin concentrations were found at the surface water layer. The nodularin concentrations were positively correlated with silicate concentrations in water. High concentrations of silica in surface water may indicate recent upwelling, which in turn renders surface water rich in nutrients. This upwelling is likely to intensify cyanobacterial growth and toxin production, which may explain this rather unexpected result. The picked Aphanizomenon colonies did not contain nodularin and the dissolved nodularin concentrations were below detection limit. Thus it was concluded that most of the nodularin was bound to Nodularia cells. The abundances of zooplankton (copepods, rotifers, and cladocerans) were unrelated to Nodularia, but were positively associated with Aphanizomenon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Suspended particles and particle aggregates, which formed from concentrated field samples on the roller table, were characterized biologically and chemically along a transect through the Baltic Sea in summer 1999. Phytoplankton composition in field samples was dominated by cyanobacteria, including the filamentous diazotrophic cyanobacteria Aphanizomenon ‘ baltica’, Nodularia spumigena and Anabaena spp. These species formed aggregates together with diatoms, mainly Skeletonema costatum and Chaetoceros spp. and with dinoflagellates, mainly withDinophysis norvegica . Compared to the Redfield ratio, concentration ratios of particulate organic carbon, nitrogen and phosphorus, [POC]:[PON]:[POP], indicated an enrichment of carbon, especially in aggregates. However, regression analysis indicated a higher production rate of PON relative to POP and POC and significant background concentrations of POC. In field samples the concentration of transparent exopolymer particles (TEP) varied around 200 μg Xanthan Equiv. l−1 and comprised a volume fraction of 2–7 ppm and an abundance of about 105 TEP ml−1. TEP were enriched in aggregates as inferred from volume ratios of TEP to conventional particles. It is suggested, that TEP contribute substantially to the background concentration of POC, while the high production rate of PON is attributed to nitrogen fixation of diazotrophic cyanobacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-04
    Description: The blooms of cyanobacteria that develop each summer in the Baltic Sea are composed of two functional groups, namely the small-sized picocyanobacteria (Synechococcus sp.) and the larger, colony-forming, filamentous N2-fixing cyanobacteria. The former encompassed both red (phycoerythrin-rich) and blue-green (phycocyanin-rich) species. The majority of the picocyanobacteria measured less than 1 μm and this size fraction comprised as much as 80% of the total cyanobacterial biomass and contributed as much as 50% of the total primary production of a cyanobacterial bloom. The picocyanobacteria are incapable of fixing N2, do not possess gas vesicles and are not toxic. However, a small filamentous Pseudanabaena sp. that could potentially fix N2 was isolated from the picocyanobacteria fraction. The larger cyanobacteria may form surface scums because they possess gas vesicles that make them buoyant. Although their biomass was less than the picocyanobacteria, they therefore form the more conspicuous and nuisance-forming part of the bloom. The larger cyanobacteria were composed mainly of three different species: Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena sp. These all belong to the heterocystous, N2-fixing cyanobacteria. N. spumigena and A. flos-aquae were the dominant species; only N. spumigena was toxic. Although individual Nodularia filaments showed a range of different phenotypes, they all belong to one species as judged from 16S rDNA sequencing. Through determination of the genotypes of many individual Nodularia filaments, it was shown that this population was not clonal and that horizontal exchange of genetic information occurs. N. spumigena and A. flos-aquae were different with respect to their photosynthetic and N2-fixing potentials. Depending on prevailing environmental conditions, these differences would promote the proliferation of one species over the other and hence would determine overall the toxicity of a bloom. Daily integrals of photon irradiance rather than temperature determined the onset of bloom formation. During a bloom, the diazotrophic cyanobacteria fixed N2 at a rate that was 10–20% in excess of their own demand for N. Picocyanobacteria assimilated most of this excess N as shown by 15N incorporation. During bloom conditions, the diazotrophic cyanobacteria met about 50% of the N demand of the total cyanobacterial community. The picocyanobacteria were predominantly N-limited while the diazotrophic cyanobacteria were probably iron limited. These findings allow us to understand the formation of toxic cyanobacterial blooms and also to develop tools to predict bloom formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-25
    Description: Although N2-fixing cyanobacteria contribute significantly to oceanic sequestration of atmospheric CO2, little is known about how N2 fixation and carbon fixation (primary production) interact in natural populations of marine cyanobacteria. In a developing cyanobacterial bloom in the Baltic Sea, rates of N2 fixation (acetylene reduction) showed both diurnal and longer-term fluctuations. The latter reflected fluctuations in the nitrogen status of the cyanobacterial population and could be correlated with variations in the ratio of acetylene reduced to 15N2 assimilated. The value of this ratio may provide useful information about the release of newly fixed nitrogen by a cyanobacterial population. However, although the diurnal fluctuations in N2 fixation broadly paralleled diurnal fluctuations in carbon fixation, the longer-term fluctuations in these two processes were out of phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...