GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 4319-4325 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The density of gap states distribution in silicon (Si) rich hydrogenated amorphous silicon carbide (a-Si1−xCx:H) films with varying carbon (C) fraction (x) is investigated by the photothermal deflection spectroscopy (PDS). The films are grown using the Electron Cyclotron Resonance Chemical Vapor Deposition (ECR-CVD) technique. By using different methane-to-silane gas flow ratios, a-Si1−xCx:H with x ranging from 0 to 0.36 are obtained. A deconvolution procedure is performed based on a proposed DOS model for these Si rich a-Si1−xCx:H. Good fits between the simulated and experimental spectra are achieved, thus rendering support to the model proposed. Deduction of the DOS enables us to obtain various parameters, including the optical gap and the valence band tail width. The fitted mobility gap Eg is found to be well correlated to the Tauc gap Etauc and E04 gap deduced from the optical absorption spectra. A correlation is also seen between the fitted valence band tail width Evu, the Urbach energy Eu and the defect density. All these parameters are seen to increase with C alloying. A shift in the defect energy level in the midgap with increasing C incorporation is observed, together with a broadening of the defect distribution and a stronger correlation between the defect bands, which can be accounted for in terms of the influence of C dangling bonds on the deep defect density distribution. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 5075-5078 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In order to explore the photoelastic effects of the ferroelectric single crystal Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZN–PT), the piezo-optical coefficients π were characterized for 0.9PZN–0.1PT and 0.88PZN–0.12PT under uniaxial stress using an interferometer method. The results show that the crystal exhibits very large π values (for example, π33 can reach 19.8×10−12 m2/N), indicating that this material is a good candidate for stress sensors and acousto-optic modulators. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 3699-3704 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have recently proposed a technique for depositing metal incorporated carbon films (Me–C:H) based on an electron cyclotron resonance chemical vapor deposition (ECR) process. This technique employs an ECR plasma derived from the excitation of source gases CH4 and Ar, together with two grids embedded within the chamber that serve as the source of the metal. It has been successfully applied for the deposition of tungsten–carbon films (W–C:H) which have been shown to exhibit a wide range of electrical, optical, and microstructural properties. These properties can be controlled through varying the deposition conditions such as the bias voltages at the grids and the substrate holder, and the flow ratio of CH4/Ar. In this work, we report on the growth and characterization of molybdenum–carbon (Mo–C:H) films deposited using the above technique incorporating two pure Mo grids. The effect of radio-frequency induced direct-current (dc) bias at the substrates was investigated. It was found that the resistivity of the films decreased by 9 orders of magnitude, and the optical gap decreased by more than 2 eV with increasing bias voltage from −38 to −130 V. The results suggest that the substrate dc bias has a crucial effect on the incorporation of Mo into the a-C:H films and the resulting microstructures, with larger bias voltages leading to an increase in the Mo fractions in the films. Concurrently, the hardness of the films was found to deteriorate from 22 to 10 GPa. The structures of these Mo–C:H films were characterized using x-ray diffraction and Raman scattering. Mo was found to exist in the forms of Mo and MoC and Mo2C. The experimental results are interpreted in terms of the effects of ion energy on the structure of the films having Mo clusters embedded within an amorphous carbon matrix. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogenated amorphous silicon carbide (a-Si1−xCx:H) films have been deposited using an electron cyclotron resonance chemical vapor deposition system. The effects of varying the microwave power from 100 to 1000 W on the deposition rate, optical band gap, film composition, and disorder were studied using various techniques such as Rutherford backscattering spectrometry, spectrophotometry, Fourier-transform infrared absorption, and Raman scattering. Samples deposited at 100 W are found to have a carbon fraction (x) of 0.49 which is close to that of stoichiometric SiC, whereas samples deposited at higher microwave powers are carbon rich with x which are nearly independent of the microwave power. The optical gaps of the films deposited at higher microwave powers were noted to be related to the strength of the C–Hn bond in the films. The photoluminescence (PL) peak emission energy and bandwidth of these films were investigated at different excitation energies (Eex) and correlated to their optical band gaps and Urbach tail widths. Using an Eex of 3.41 eV, the PL peak energy was found to range from 2.44 to 2.79 eV, with the lowest value corresponded to an intermediate microwave power of 600 W. At increasing optical gap, the PL peak energy was found to be blueshifted, accompanied by a narrowing of the bandwidth. Similar blueshift was also observed at increasing Eex, but in this case accompanied by a broadening of the bandwidth. These results can be explained using a PL model for amorphous semiconductors based on tail-to-tail states radiative recombination. A linear relation between the full width at half maximum of the PL spectra and the Urbach energy was also observed, suggesting the broadening of the band tail states as the main factor that contributes to the shape of the PL spectra observed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 452-461 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of high-energy electron irradiation on structural and polarization properties of 50/50 mol % copolymer of poly(vinylidene fluoride-trifluoroethylene) was investigated for both mechanically stretched and unstretched films. Although stretching can significantly enhance the polarization and dielectric responses in unirradiated films, it was observed that this enhancement was not significant in irradiated films. In addition, the polarization in both types of films after irradiation can be described quite well by a logarithmic mixing law of composites, which consist of crystallites embedded in an amorphous matrix with nearly the same fitting parameters. On the other hand, the enhancement of the mechanical properties from stretching persists after the irradiation, and the elastic modulus along the stretching direction remains high after irradiation in comparison with unstretched films. It was found that the dielectric dispersion in both types of films after irradiation fits well to the Vogel–Fulcher law. It was also observed that the crystallinity decreases and the crosslinking coefficient increases continuously with dose. However, there was no direct one to one type relationship between the crystallinity and the crosslinking coefficient. Although stretching can reduce the rate of crosslinking, the reduction of crystallinity with dose for stretched and unstretched films does not show a marked difference. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 7696-7701 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Solid-state interfacial reaction in the Ni/Nb multilayers upon thermal annealing is investigated with molecular-dynamics simulation. The result shows that amorphization takes place at medium temperatures and the growth of the amorphous interlayer presents an asymmetric behavior due to faster consuming of the Ni layer than the Nb layer. Consequently, a Ni-enriched amorphous phase is formed together with some unreacted Nb before complete amorphization, which agrees well with the experimental observations. Moreover, it is revealed that the Nb lattice can accommodate a large number of Ni atoms and still retain crystalline structure, while a small amount of Nb atoms induce a spontaneous decay of the Ni lattice, which is essentially the physical origin of the asymmetric growth observed in not only the Ni–Nb system but also in the other systems studied so far. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 433-436 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Carbon nanoparticles were prepared from H2 and CH4 by microwave plasma chemical vapor deposition at various temperatures as low as 250 °C by using nickel and iron as catalysts. The carbon nanoparticles are well graphitized until a temperature as low as 400 °C, and the degree of graphitization increases with increasing growth temperature. Field emission measurements showed that the carbon nanoparticles are excellent electron field emitters, comparable to carbon nanotubes. Field emission properties became better with increasing growth temperature, and the threshold fields of the carbon nanoparticles deposited at 400, 500, 670 °C, were 3.2, 3, and 1 V/μm, respectively. No emission was observed for the carbon nanoparticles deposited below 400 °C. The low threshold field of the carbon nanoparticles is attributed to field enhancement effect and the higher degree of graphitization. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 2227-2231 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ag–O–Cs thin films with internal field-assisted structure were fabricated, and enhanced photoemission was observed when the internal electric field was applied to the thin films. The increase of photoelectronic quantum yield, corresponding to the applied 30 V bias, was about 15.7%, while the thin films were irradiated by the light with wavelength of 510 nm. From an analysis of the electric potential distribution in the Ag–O–Cs thin films with the applied internal electric field, it is found that the interfacial barrier between the Ag nanoparticles and the Cs2O matrix is decreased and the vacuum level at the surface is degraded. The calculated barrier curves for various applied biases are illustrated to show the thinning effect of internal electric field on the interfacial barrier width. The theoretical lowering of interfacial barrier height is obtained as 0.08 and 0.22 eV when the thin films are stimulated by applied bias of 1 and 30 V, respectively. Further, a group of formulas as well, based upon the electric potential distribution in the Ag–O–Cs thin films, is deduced to describe the relationship between the applied bias and the degradation of the surface vacuum level. The enhanced photoemission of Ag–O–Cs thin films is attributed to the field-induced variations in the energy band structure which are considered to result in the increased probabilities for the photoexcited electrons to travel through the interfacial barrier and escape into the vacuum. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 405-409 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using a high temperature solution infiltration process, ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer is infiltrated into three-dimensional (3D) periodic opal lattices with the silica opal diameters of 180, 225, and 300 nm to form periodic composite structures. By etching out the silica opal, inverse copolymer opals can be fabricated, which retains the 3D periodic structure of the original silica opal lattice. In addition to the optical observation, x-ray diffraction and dielectric study were carried out to characterize the change in the ferroelectric behavior of the composites and inverse opals. Although the copolymer in the composites and inverse opals remains ferroelectric, the ferroelectric transition in the composites and inverse opal becomes diffused and moves to a lower temperature, which is due to the random stress introduced by the irregular voids and interfaces and may be made use of to facilitate the transformation of the copolymer into a relaxor. These results suggest the feasibility of using ferroelectric copolymer to form 3D photonic crystals. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 2613-2616 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the observation of the critical thickness of crystallization of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer thin films, which were solution spun cast on platinum coated silicon wafer. The effect occurs at about 100 nm thickness, which is significantly above any currently known spatial dimensions of the polymer, so that for films at thickness below about 100 nm, the crystallization process is strongly hindered, resulting in a low crystallinity in these films. This low crystallinity leads to a large and discontinuous change of the dielectric constant and ferroelectric polarization in the films below the critical thickness. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...