GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (1)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Applied microbiology and biotechnology 54 (2000), S. 418-423 
    ISSN: 1432-0614
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Abstract Highly oil-absorbent polyurethane foam (PUF) materials were obtained by polymerizing polyether polyol mixture and carbodiimide-modified d-methyl diisocyanate in a weight ratio of 10:2. The foam materials were prepared to contain inorganic nutrients (slow-release fertilizer; SRF) and oil-degrading yeast cells, Yarrowia lipolytica 180, to be applied for removal of oil films on surface waters through absorption and biodegradation after oil spills. PUFs absorbed 7–9 times their own weight of Arabian light crude oil and the oil absorbency appeared to improve as the ratio of surface area to foam weight increased. PUFs showed excellent floatability which was maintained for more than 6 months in sea water, and less than 5% of the absorbed oil was released when the foams were left on water for more than 10 days. For immobilization of yeast cells into PUFs, various immobilization techniques were tested to compare their oil degrading ability and the maintenance thereof. All immobilized cells showed oil degrading abilities as good as those of free cells immediately after the preparation of PUFs, however, the activity of chitin-immobilized cells remained at a high level for the longest period of preservation. The high efficiency of oil absorption and oil degradation by PUF-immobilized yeast cells suggested that PUF-immobilized cells have a high potential as a bioremediation technique for the treatment of oil films on surface waters.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...