GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (2)
Materialart
Sprache
Erscheinungszeitraum
  • 2000-2004  (2)
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Oceans Vol. 105, No. C1 ( 2000-01-15), p. 1017-1036
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 105, No. C1 ( 2000-01-15), p. 1017-1036
    Kurzfassung: Western boundary disturbances detected in the first multicentury integration of the National Center for Atmospheric Research Climate System Model are analyzed, and the role they play in the model interdecadal variability is investigated. The boundary signals propagate southwestward along the coast of North America. At depth they reach the equator and propagate along the equator but with decreasing amplitude away from the western boundary. Their southwestward propagation is associated with the evolution of the western boundary current system (the Gulf Stream system in the upper part of the water column and the Deep Western Boundary Current at depth) from weaker than average to stronger than average conditions. Thus the boundary disturbances seem to play an important role in the model thermohaline circulation variability at interdecadal timescales. They show similarities with the boundary “waves” found in ocean‐only models exhibiting interdecadal variability, and their role in the model's response to changes in the rate of sinking appears to be in agreement with the theory of the spin‐up of the deep ocean circulation. The main result of this study is that the similarities with ocean‐only results and theories support the idea that interdecadal timescales of variability originate from the ocean dynamics.
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2000
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2003
    In:  Journal of Physical Oceanography Vol. 33, No. 8 ( 2003-08-01), p. 1549-1563
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 33, No. 8 ( 2003-08-01), p. 1549-1563
    Kurzfassung: Observations indicate the existence of two bands of maximum thermocline depth variability centered at ∼10°S and 13°N in the tropical Pacific Ocean. The analysis of a numerical integration performed with the National Center for Atmospheric Research ocean general circulation model (OGCM) forced with observed fluxes of momentum, heat, and freshwater over the period from 1958 to 1997 reveals that the tropical centers of thermocline variability at 10°S and 13°N are associated with first-mode baroclinic Rossby waves forced by anomalous Ekman pumping. In this study the factors that may be responsible for the Rossby wave maxima at 10°S and 13°N, including the amplitude and spatial coherency of the forcing at those latitudes, are systematically investigated. A simple Rossby wave model is used to interpret the OGCM variability and to help to discriminate between the different factors that may produce the tropical maxima. These results indicate that the dominant factor in producing the maximum variability at 10°S and 13°N is the zonal coherency of the Ekman pumping, a characteristic of the forcing that becomes increasingly more pronounced at low frequencies, maximizing at timescales in the decadal range. Local maxima in the amplitude of the forcing, while not explaining the origin of the centers of variability at 10°S and 13°N, appear to affect the sharpness of the variability maxima at low frequencies. Although the Rossby wave model gives an excellent fit to the OGCM, some discrepancies exist: the amplitude of the thermocline variance is generally underestimated by the simple model, and the variability along 13°N is westward intensified in the wave model but reaches a maximum in the central part of the basin in the OGCM. Short Rossby waves excited by small-scale Ekman pumping features, or the presence of higher-order Rossby wave modes may be responsible for the differences in the zonal variance distribution along 13°N.
    Materialart: Online-Ressource
    ISSN: 1520-0485 , 0022-3670
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2003
    ZDB Id: 2042184-9
    ZDB Id: 184162-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...