GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (11)
  • 2000-2004  (11)
Document type
Years
Year
  • 1
    Publication Date: 2017-12-06
    Description: This paper presents a revised chemical purification method of Hf for the measurement of Hf isotope ratios of Fe–Mn crusts on a new generation of double focusing multiple collector plasma source mass spectrometer (MC-ICP-MS). By measuring surface scrapings of hydrogenetic Fe–Mn crusts distributed over the three major ocean basins, the present-day Hf isotope distribution of oceanic deep water is assessed in detail. The results show an εHf provinciality correlated with those of other radiogenic isotope tracers such as Nd and Pb in agreement with previous studies. This supports the use of Hf isotopes as tracer of element source provenance and water masses. Fe–Mn crusts display the same present-day Hf–Nd isotope array as given before for Mn nodules. The smaller isotopic variability of Hf compared with Nd may either be caused by a more efficient mixing of Hf than Nd in the ocean due to a longer residence time or may be a consequence of a systematically more radiogenic Hf than Nd isotope signature delivered to the oceans by weathering of continental crust. A Hf isotope time series was measured on crust VA13/2 to assess the Hf isotope compositions of the Central Pacific deep water over the past 26 Ma. No consistency is observed between the Hf and Pb isotope time series. In contrast, Hf and Nd isotope time series display similar patterns which are, however, apparently offset by 2 Ma prior to 14 Ma. Differential diffusion of Hf and Nd does not explain this offset. The smaller amplitude in the Hf isotope variations compared with the Nd isotopes rather argues for more efficient mixing of Hf in the ocean. We suggest that both isotope systems have responded in a similar way to the processes affecting the dissolved radiogenic isotope composition of Pacific deep water during this time interval. The parallel increase in εHf and εNd observed between 14 and 3 Ma may probably be attributed to the increased inputs of Hf and Nd into the Central Pacific Ocean derived from the weathering of the Pacific Islands Arcs. Over the past 3 Ma an increased aeolian continental input derived from Asia most likely caused negative shifts in εNd and εHf recorded by VA13/2. The fact that Hf and Nd isotope compositions plot along the present-day array for Fe–Mn crusts and Mn nodules over the entire past 26 Ma suggests that aeolian supply of Hf to the Pacific Ocean has been a long-term important feature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-15
    Description: The iron (Fe) isotope compositions of 37 hydrogenetic ferromanganese deposits from various oceans have been analysed by MC-ICPMS; they permit the construction of a global map of Fe isotopic values. The isotopic compositions range between −1.2 and −0.1‰ in δ57FeIRMM14. Averages for the Atlantic and the Pacific are −0.41 and −0.88‰, but their standard deviations are identical (0.27, 1σ) and the data very largely overlap. No correlation is found with Pb or Nd isotope compositions and there is no evidence that the observed oceanic Fe isotopic heterogeneity is directly controlled by variations in continental sources. The small quantities of Fe that can be introduced from hydrothermal sources render as unlikely the possibility that the isotopic variations reflect variable proportions of continental and hydrothermal Fe, as recently proposed. The more likely explanation is that the variations are induced locally within the ocean. The exact sources of fractionation remain unclear. Likely possibilities are the dissolution and reprecipitation processes that liberate Fe from sediments during anoxic events, dissolution in surface waters or processes occurring during growth of the crusts
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-06
    Description: Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe–Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe–Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ϵ205Tl greater than +2.5, whereas anoxic sediments have ϵ205Tl of less than −1.5 (ϵ205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ϵ205Tl values of oxic sediments probably reflect authigenic Fe–Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe–Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe–Mn crusts distributed globally (ϵ205Tl=+12.8±1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe–Mn crusts that are older than 25 Ma show a systematic increase of ϵ205Tl with decreasing age, from about +6 at 60–50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ϵ205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic emanations. Alternatively, the Tl isotope trends may reflect the increasing importance of Tl fluxes to altered ocean crust through time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-09
    Description: Results are presented for the first in-depth investigation of Tl isotope variations in marine materials. The Tl isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe–Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of Tl isotope compositions in these samples exceeds the analytical reproducibility (±0.05‰) by more than a factor of 40. Hydrogenetic Fe–Mn crusts have ϵ205Tl of +10 to +14, whereas seawater is characterized by values as low as −8 (ϵ205Tl represents the deviation of the 205Tl/203Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 104). This ∼2‰ difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of Tl onto ferromanganese particles. An equilibrium fractionation factor of α∼1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable Tl isotope compositions that range between the values obtained for seawater and hydrogenetic Fe–Mn crusts. The variability in ϵ205Tl in diagenetic nodules appears to be caused by the adsorption of Tl from pore fluids, which act as a closed-system reservoir with a Tl isotope composition that is inferred to be similar to seawater. Nodules with ϵ205Tl values similar to seawater are found if the scavenging of Tl is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ϵ205Tl and Mn/Fe. This trend is thought to be due to the derivation of Tl from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ϵ205Tl are produced by the adsorption of Tl from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal manganese deposits with high Mn/Fe and high ϵ205Tl are generated by scavenging of Tl from colder, more distal hydrothermal fluids. Under such conditions, adsorption is associated with significant isotope fractionation, and this produces deposits with higher ϵ205Tl values coupled with high Mn/Fe.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-15
    Description: The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10Be/9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/204Pb from low values in the Miocene (≤18.57) to high values at present day (≥18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/204Pb and 208Pb/204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb–Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young volcanic arcs, one located in the northeastern part and one located in the northwestern part of the Pacific margin, from where material has been eroded and delivered to the ocean, most likely via riverine pathways.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223-224 . pp. 247-252.
    Publication Date: 2017-02-13
    Description: A method for direct measurement of the natural 10Be/9Be ratio in a sample by AMS is presented. Samples of 100 ng of Be with 10Be concentrations orders of magnitude higher than in conventional 10Be AMS samples were produced without the addition of 9Be carrier and analysed using the accelerator secondary ion mass spectrometry (Accelerator SIMS) source of the PSI/ETH AMS facility. Special mounting techniques and the analysis procedure using a focussed Cs+ beam of up to 600 nA and beam spot diameter of 100 μm are described. The results of measurements on two test samples from Pacific ferromanganese crust D11–1 are presented and compared with similar measurements by conventional secondary ion mass spectrometry (SIMS). Background measurements at a level of ∼5 × 10−11 indicate that ratios of a few times 10−10 could be measured to a precision of ∼10%. PACS 29.17.+w; 29.30.−h; 82.80.Ms; 89.60.+x
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-15
    Description: Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-28
    Description: The behavior of dissolved Hf in the marine environment is not well understood due to the lack of direct seawater measurements of Hf isotopes and the limited number of Hf isotope time-series obtained from ferromanganese crusts. In order to place better constraints on input sources and develop further applications, a combined Nd-Hf isotope time-series study of five Pacific ferromanganese crusts was carried out. The samples cover the past 38 Myr and their locations range from sites at the margin of the ocean to remote areas, sites from previously unstudied North and South Pacific areas, and water depths corresponding to deep and bottom waters. For most of the samples a broad coupling of Nd and Hf isotopes is observed. In the Equatorial Pacific εNd and εHf both decrease with water depth. Similarly, εNd and εHf both increase from the South to the North Pacific. These data indicate that the Hf isotopic composition is, in general terms, a suitable tracer for ocean circulation, since inflow and progressive admixture of bottom water is clearly identifiable. The time-series data indicate that inputs and outputs have been balanced throughout much of the late Cenozoic. A simple box model can constrain the relative importance of potential input sources to the North Pacific. Assuming steady state, the model implies significant contributions of radiogenic Nd and Hf from young circum-Pacific arcs and a subordinate role of dust inputs from the Asian continent for the dissolved Nd and Hf budget of the North Pacific. Some changes in ocean circulation that are clearly recognizable in Nd isotopes do not appear to be reflected by Hf isotopic compositions. At two locations within the Pacific Ocean a decoupling of Nd and Hf isotopes is found, indicating limited potential for Hf isotopes as a stand-alone oceanographic tracer and providing evidence of additional local processes that govern the Hf isotopic composition of deep water masses. In the case of the Southwest Pacific there is evidence that decoupling may have been the result of changes in weathering style related to the buildup of Antarctic glaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 201 . pp. 639-647.
    Publication Date: 2016-11-15
    Description: The Hf isotope composition of seawater does not match that expected from dissolution of bulk continental crust. This mismatch is generally considered to be due to retention of unradiogenic Hf in resistant zircons during incomplete weathering of continental crust. During periods of intense glacial weathering, zircons should break down more efficiently, resulting in the release of highly unradiogenic Hf to the oceans. We test this hypothesis by comparing Nd and Hf isotope time series obtained from NW Atlantic ferromanganese crusts. Both isotope systems show a decrease associated with the onset of northern hemisphere glaciation. The observed changes display distinct trajectories in ϵNd–ϵHf space, which differ from previously reported arrays of bulk terrestrial material and seawater. Such patterns are consistent with the release of highly unradiogenic Hf from very old zircons, facilitated by enhanced mechanical weathering
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-25
    Description: We present integrated relative production rates for cosmogenic nuclides in rock surfaces, which take into account reported variations of the geomagnetic field intensity during the past 800,000 yr. The calculations are based on the model simulating cosmic ray particle interactions with the Earth’s atmosphere given by Masarik and Beer [“Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere,” J. Geophys. Res. 104(D10), 12099–12111, 1999]. Corrections are nearly independent on altitude between sea level and at least 5000 m. The correction factors are essentially identical for all stable and radioactive cosmogenic nuclides with half-lives longer than a few hundred thousand years. At the equator, integrated production rates for exposure ages between ∼40,000 to 800,000 yr are 10 to 12% higher than the present-day values, whereas at latitudes 〉40°, geomagnetic field intensity variations have hardly influenced in situ cosmogenic nuclide production. Correction factors for in situ 14C production rates differ from those of longer-lived nuclides. They are always smaller than ∼2% because the magnetic field intensity remained rather constant during the past ∼10 kyr, when the major fraction of the 14C extant today was produced.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...