GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1985-1989  (1)
  • 1
    ISSN: 1432-2013
    Keywords: HCO3 secretion ; Membrane potentials ; Cell membrane ion permeabilities ; Ouabain ; Prostaglandin E1 ; Loperamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Loperamide inhibits PGE1-induced electrogenic HCO3 secretion in guinea-pig gallbladder. Underlying changes in epithelial cell membrane properties were investgated using intracellular microelectrode techniques in vitro. In the absence of PGE1, mucosal loperamide (10−4 mol/l) reversibly depolarized both cell membranes by ∼ 6 mV. The apparent ratio of membrane resistances (R a/R b) remained unchanged and so did voltage responses to luminal Cl removal and Na reduction. The depolarizing response to elevation of luminal K concentration from 5 to 76 mmol/l was decreased from 13 to 8 mV. In the presence of 1 PGE1, the apical membrane is mainly permeable to Cl and HCO3. Under these conditions, loperamide reduced membrane potentials by ∼ 10 mV,R a/R b remaining constant at ∼ 0.4. Effects on voltage responses to changes in luminal Na or K concentration were unchanged. Responses to luminal Cl removal (transient depolarization) were greatly enhanced (from 22 to 42 mV) as predictable from the fall in K permeability that hinders Cl efflux from cell into lumen. Less marked but significant effects were obtained with 10−5 mol/l (mucosal side) and serosal loperamide (10−4 mol/l). We suggest that loperamide inhibits electrogenic HCO3 secretion by reducing apical membrane K permeability. The resulting depolarization diminishes the driving force for conductive anion efflux from cell into lumen. This conclusion is supported by the ability of luminal K elevation to mimick loperamide inhibition of the secretory flux of HCO3 (pH-stat experiments).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 441 (2000), S. 12-24 
    ISSN: 1432-2013
    Keywords: Liver Cell volume regulation Na+ conductance Na+/H+ antiport Na+-K+-2Cl– symport Na+/K+-ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The initial event in the regulatory volume increase (RVI) of rat hepatocytes is an influx of Na+ that is then exchanged for K+ via stimulation of Na+/K+-adenosine triphosphatase (ATPase). In this study, we analysed the activation pattern of the Na+ transporters underlying RVI as a function of the degree of hypertonic stress. In confluent primary cultures, four hypertonic conditions were tested (changes from 300 to 327, 360, 400 or 450 mosmol/l) and the activities of Na+ conductance, Na+/H+ antiport, Na+-K+-2Cl– symport and Na+/K+-ATPase were quantified using intracellular microelectrodes, microfluorometry and time-dependent, furosemide- or ouabain-sensitive 86Rb+ uptake, respectively. Neither Na+ conductance nor Na+-K+-2Cl– symport responded to 327 mosmol/l. At 360, 400 and 450 mosmol/l, uptake via these transporters would lead to increases of cell Na+ by 33.0, 49.0 and 49.0 and by 4.5, 10.4 and 9.2 mmol/l per 10 min, respectively. In contrast, Na+/H+ antiport exhibited 65% of its maximal activation already at 327 mosmol/l. At the four osmolarities tested, this transporter would augment cell Na+ by 6.9, 8.9, 9.8 and 10.6 mmol/l per 10 min. The sums of Na+ import were consistent with the amounts of Na+ exported via Na+/K+-ATPase plus the actual increases of cell Na+ (21.2, 58.5, 63.6 and 68.3 mmol/l per 10 min and 2.2, 4.0, 6.3 and 8.2 mmol/l, respectively). In addition, these elevations of cell Na+ plus the increases of cell K+ (via Na+/K+-ATPase) that amounted to 5.0, 6.5, 17.5 and 18.4 mmol/l were consistent with the increases of intracellular osmotic (cationic) activity of 2.5, 11.5, 21.0 and 28.5 mmol/l, respectively, computed from RVI data. It is concluded that the principle of rat hepatocyte RVI, i.e. an initial uptake of Na+ that is then exchanged for K+ via Na+/K+-ATPase, is realized over the entire range of 9-50% hypertonicity tested. The set-point for the activation of RVI clearly lies below 327 mosmol/l. Na+/H+ antiport is the most sensitive Na+ importer involved in RVI, whereas Na+ conductance plays the prominent role from 360 mosmol/l upwards.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...