GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Proteomics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (386 pages)
    Edition: 1st ed.
    ISBN: 9783527607945
    Series Statement: Methods and Principles in Medicinal Chemistry Series ; v.28
    Language: English
    Note: Intro -- Proteomics in Drug Research -- Contents -- A Personal Foreword -- Preface -- List of Contributors -- I Introduction -- 1 Administrative Optimization of Proteomics Networks for Drug Development -- 1.1 Introduction -- 1.2 Tasks and Aims of Administration -- 1.3 Networking -- 1.4 Evaluation of Biomarkers -- 1.5 A Network for Proteomics in Drug Development -- 1.6 Realization of Administrative Networking: the Brain Proteome Projects -- 1.6.1 National Genome Research Network: the Human Brain Proteome Project -- 1.6.2 Human Proteome Organisation: the Brain Proteome Project -- 1.6.2.1 The Pilot Phase -- References -- 2 Proteomic Data Standardization, Deposition and Exchange -- 2.1 Introduction -- 2.2 Protein Analysis Tools -- 2.2.1 UniProt -- 2.2.2 InterPro -- 2.2.3 Proteome Analysis -- 2.2.4 International Protein Index (IPI) -- 2.2.5 Reactome -- 2.3 Data Storage and Retrieval -- 2.4 The Proteome Standards Initiative -- 2.5 General Proteomics Standards (GPS) -- 2.6 Mass Spectrometry -- 2.7 Molecular Interactions -- 2.8 Summary -- References -- II Proteomic Technologies -- 3 Difference Gel Electrophoresis (DIGE): the Next Generation of Two-Dimensional Gel Electrophoresis for Clinical Research -- 3.1 Introduction -- 3.2 Difference Gel Electrophoresis: Next Generation of Protein Detection in 2-DE -- 3.2.1 Application of CyDye DIGE Minimal Fluors (Minimal Labeling with CyDye DIGE Minimal Fluors) -- 3.2.1.1 General Procedure -- 3.2.1.2 Example of Use: Identification of Kinetic Proteome Changes upon Ligand Activation of Trk-Receptors -- 3.2.2 Application of Saturation Labeling with CyDye DIGE Saturation Fluors -- 3.2.2.1 General Procedure -- 3.2.2.2 Example of Use: Analysis of 1000 Microdissected Cells from PanIN Grades for the Identification of a New Molecular Tumor Marker Using CyDye DIGE Saturation Fluors. , 3.2.3 Statistical Aspects of Applying DIGE Proteome Analysis -- 3.2.3.1 Calibration and Normalization of Protein Expression Data -- 3.2.3.2 Detection of Differentially Expressed Proteins -- 3.2.3.3 Sample Size Determination -- 3.2.3.4 Further Applications -- References -- 4 Biological Mass Spectrometry: Basics and Drug Discovery Related Approaches -- 4.1 Introduction -- 4.2 Ionization Principles -- 4.2.1 Matrix-Assisted Laser Desorption/Ionization (MALDI) -- 4.2.2 Electrospray Ionization -- 4.3 Mass Spectrometric Instrumentation -- 4.4 Protein Identification Strategies -- 4.5 Quantitative Mass Spectrometry for Comparative and Functional Proteomics -- 4.6 Metabolic Labeling Approaches -- 4.6.1 (15)N Labeling -- 4.6.2 Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) -- 4.7 Chemical Labeling Approaches -- 4.7.1 Chemical Isotope Labeling at the Protein Level -- 4.7.2 Stable Isotope Labeling at the Peptide Level -- 4.8 Quantitative MS for Deciphering Protein-Protein Interactions -- 4.9 Conclusions -- References -- 5 Multidimensional Column Liquid Chromatography (LC) in Proteomics - Where Are We Now? -- 5.1 Introduction -- 5.2 Why Do We Need MD-LC/MS Methods? -- 5.3 Basic Aspects of Developing a MD-LC/MS Method -- 5.3.1 General -- 5.3.2 Issues to be Considered -- 5.3.3 Sample Clean-up -- 5.3.4 Choice of Phase Systems in MD-LC -- 5.3.5 Operational Aspects -- 5.3.6 State-of-the-Art - Digestion Strategy Included -- 5.3.6.1 Multidimensional LC MS Approaches -- 5.4 Applications of MD-LC Separation in Proteomics - a Brief Survey -- 5.5 Sample Clean-Up: Ways to Overcome the "Bottleneck" in Proteome Analysis -- 5.6 Summary -- References -- 6 Peptidomics Technologies and Applications in Drug Research -- 6.1 Introduction -- 6.2 Peptides in Drug Research -- 6.2.1 History of Peptide Research -- 6.2.2 Brief Biochemistry of Peptides. , 6.2.3 Peptides as Drugs -- 6.2.4 Peptides as Biomarkers -- 6.2.5 Clinical Peptidomics -- 6.3 Development of Peptidomics Technologies -- 6.3.1 Evolution of Peptide Analytical Methods -- 6.3.2 Peptidomic Profiling -- 6.3.3 Top-Down Identification of Endogenous Peptides -- 6.4 Applications of Differential Display Peptidomics -- 6.4.1 Peptidomics in Drug Development -- 6.4.2 Peptidomics Applied to in vivo Models -- 6.5 Outlook -- References -- 7 Protein Biochips in the Proteomic Field -- 7.1 Introduction -- 7.2 Technological Aspects -- 7.2.1 Protein Immobilization and Surface Chemistry -- 7.2.2 Transfer and Detection of Proteins -- 7.2.3 Chip Content -- 7.3 Applications of Protein Biochips -- 7.4 Contribution to Pharmaceutical Research and Development -- References -- 8 Current Developments for the In Vitro Characterization of Protein Interactions -- 8.1 Introduction -- 8.2 The Model System: cAMP-Dependent Protein Kinase -- 8.3 Real-time Monitoring of Interactions Using SPR Biosensors -- 8.4 ITC in Drug Design -- 8.5 Fluorescence Polarization, a Tool for High-Throughput Screening -- 8.6 AlphaScreen as a Pharmaceutical Screening Tool -- 8.7 Conclusions -- References -- 9 Molecular Networks in Morphologically Intact Cells and Tissue-Challenge for Biology and Drug Development -- 9.1 Introduction -- 9.2 A Metaphor of the Cell -- 9.3 Mapping Molecular Networks as Patterns: Theoretical Considerations -- 9.4 Imaging Cycler Robots -- 9.5 Formalization of Network Motifs as Geometric Objects -- 9.6 Gain of Functional Information: Perspectives for Drug Development -- References -- III Applications -- 10 From Target to Lead Synthesis -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.2.1 Cells and Culture Conditions -- 10.2.2 In Vitro Activity Testing -- 10.2.3 Affinity Chromatography -- 10.2.4 Electrophoresis and Protein Identification. , 10.2.5 BIAcore Analysis -- 10.2.6 Synthesis of Acyl Cyanides -- 10.2.6.1 Methyl 5-cyano-5-oxopentanoate -- 10.2.6.2 Methyl 6-cyano-6-oxohexanoate -- 10.2.6.3 Methyl-5-cyano-3-methyl-5-oxopentanoate -- 10.3 Results -- 10.4 Discussion -- References -- 11 Differential Phosphoproteome Analysis in Medical Research -- 11.1 Introduction -- 11.2 Phosphoproteomics of Human Platelets -- 11.2.1 Cortactin -- 11.2.2 Myosin Regulatory Light Chain -- 11.2.3 Protein Disulfide Isomerase -- 11.3 Identification of cAMP- and cGMP-Dependent Protein Kinase Substrates in Human Platelets -- 11.4 Identification of a New Therapeutic Target for Anti-Inflammatory Therapy by Analyzing Differences in the Phosphoproteome of Wild Type and Knock Out Mice -- 11.5 Concluding Remarks and Outlook -- References -- 12 Biomarker Discovery in Renal Cell Carcinoma Applying Proteome-Based Studies in Combination with Serology -- 12.1 Introduction -- 12.1.1 Renal Cell Carcinoma -- 12.2 Rational Approaches Used for Biomarker Discovery -- 12.3 Advantages of Different Proteome-Based Technologies for the Identification of Biomarkers -- 12.4 Type of Biomarker -- 12.5 Proteome Analysis of Renal Cell Carcinoma Cell Lines and Biopsies -- 12.6 Validation of Differentially Expressed Proteins -- 12.7 Conclusions -- References -- 13 Studies of Drug Resistance Using Organelle Proteomics -- 13.1 Introduction -- 13.1.1 The Clinical Problem and the Proteomics Response -- 13.2 Objectives and Experimental Design -- 13.2.1 The Cell Lines -- 13.2.2 Organelle Isolation -- 13.2.2.1 Criteria for Isolation -- 13.2.2.2 Plasma Membrane Isolation -- 13.2.3 Protein Fractionation and Identification -- 13.2.4 Quantitative Comparisons of Protein Abundances -- 13.3 Changes in Plasma Membrane and Nuclear Proteins in MCF-7 Cells Resistant to Mitoxantrone -- References. , 14 Clinical Neuroproteomics of Human Body Fluids: CSF and Blood Assays for Early and Differential Diagnosis of Dementia -- 14.1 Introduction -- 14.2 Neurochemical Markers of Alzheimer's Disease -- 14.2.1 β-Amyloid Precursor Protein (β-APP): Metabolism and Impact on AD Diagnosis -- 14.2.2 Tau Protein and its Phosphorylated Forms -- 14.2.2.1 Hyperphosphorylation of Tau as a Pathological Event -- 14.2.2.2 Phosphorylated Tau in CSF as a Biomarker of Alzheimer's Disease -- 14.2.3 Apolipoprotein E (ApoE) Genotype -- 14.2.4 Other Possible Factors -- 14.2.5 Combined Analysis of CSF Parameters -- 14.2.6 Perspectives: Novel Techniques to Search for AD Biomarkers - Mass Spectrometry (MS), Differential Gel Electrophoresis (DIGE), and Multiplexing -- 14.3 Conclusions -- References -- 15 Proteomics in Alzheimer's Disease -- 15.1 Introduction -- 15.2 Proteomic Analysis -- 15.2.1 Sample Preparation -- 15.2.2 Two-Dimensional Electrophoresis -- 15.2.3 Protein Quantification -- 15.2.4 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy -- 15.3 Proteins with Deranged Levels and Modifications in AD -- 15.3.1 Synaptosomal Proteins -- 15.3.2 Guidance Proteins -- 15.3.3 Signal Transduction Proteins -- 15.3.4 Oxidized Proteins -- 15.3.5 Heat Shock Proteins -- 15.3.6 Proteins Enriched in Amyloid Plaques -- 15.4 Limitations -- References -- 16 Cardiac Proteomics -- 16.1 Heart Proteomics -- 16.1.1 Heart 2-D Protein Databases -- 16.1.2 Dilated Cardiomyopathy -- 16.1.3 Animal Models of Heart Disease -- 16.1.4 Subproteomics of the Heart -- 16.1.4.1 Mitochondria -- 16.1.4.2 PKC Signal Transduction Pathways -- 16.1.5 Proteomics of Cultured Cardiac Myocytes -- 16.1.6 Proteomic Characterization of Cardiac Antigens in Heart Disease and Transplantation -- 16.1.7 Markers of Acute Allograft Rejection -- 16.2 Vessel Proteomics -- 16.2.1 Proteomics of Intact Vessels. , 16.2.2 Proteomics of Isolated Vessel Cells.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...