GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (556)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2007. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 32 (2007): 133-149, doi:10.1109/JOE.2007.890953.
    Description: High-resolution multibeam sonar and state-of-the- art data processing and visualization techniques have been used to quantify the evolution of seafloor morphology and the degree of burial of instrumented mines and mine-shapes as part of the U.S. Office of Naval Research (ONR, Arlington, VA) mine burial experiment at the Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). Four surveys were conducted over two years at the experiment site with a 455-kHz, Reson 8125 dynamically focused multibeam sonar. The region is characterized by shore-perpendicular alternating zones of coarse-grained sand with 5?25-cm-high, wave orbital-scale ripples, and zones of finer grained sands with smaller (2?5-cm-high) anorbital ripples and, on occasion, medium scale 10?20-cm-high, chaotic or hummocky bedforms. The boundaries between the zones appear to respond over periods of days to months to the predominant wave direction and energy. Smoothing and small shifts of the boundaries to the northeast take place during fair-weather wave conditions while erosion (scalloping of the boundary) and shifts to the north-northwest occur during storm conditions. The multibeam sonar was also able to resolve changes in the orientation and height of fields of ripples that were directly related to the differences in the prevailing wave direction and energy. The alignment of the small scale bedforms with the prevailing wave conditions appears to occur rapidly (on the order of hours or days) when the wave conditions exceed the threshold of sediment motion (most of the time for the fine sands) and particularly during moderate storm conditions. During storm events, erosional ?windows? to the coarse layer below appear in the fine-grained sands. These ?window? features are oriented parallel to the prevailing wave direction and reveal orbital-scale ripples that are oriented perpendicular to the prevailing wave direction. The resolution of the multibeam sonar combined with 3-D visualization techniques provided realistic looking images of both both instrumented and noninstrumented mines and mine-like objects (including bomb, Manta, and Rockan shapes) that were dimensionally correct and enabled unambiguous identification of the mine type. In two of the surveys (October and December 2004), the mines in the fine-grained sands scoured into local pits but were still perfectly visible and identifiable with the multibeam sonar. In the April 2004 survey, the mines were not visible and apparently were completely buried. In the coarse-grained sand zone, the mines were extremely difficult to detect after initial scour burial as the mines bury until they present the same hydrodynamic roughness as the orbital-scale bedforms and thus blend into the ambient ripple field. Given the relatively large, 3-D, spatial coverage of the multibeam sonar along with its ability to measure the depth of the seafloor and the depth and dimensions of the mine, it is possible to measure directly, the burial by depth and burial by surface area of the mines. The 3-D nature of the multibeam sonar data also allows the direct determination of the volume of material removed from a scour pit.
    Description: The work of L. A. Mayer, R. Raymond, G. Glang, P. Traykovski, and A. C. Trembanis was supported by the U.S. Office of Naval Research (ONR) under the Grants N00014-01-1-0847, N00014-01-10564, and N00014-03-1-0298. The work of M. D. Richardson was supported by the U.S. Office of Naval Research (NRL) under the Core funding. The work of L. A. Mayer, R. Raymond, and G. Gland was also supported by the National Oceanic and Atmospheric Administration (NOAA) under the Grant NA17OG2285.
    Keywords: High-resolution seafloor mapping ; Hummocky bedforms ; Mine burial and detection ; Multibeam sonar ; Rippled scour depressions ; Sorted bedforms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2007. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 32 (2007): 150-166, doi:10.1109/JOE.2007.890956.
    Description: Several experiments to measure postimpact burial of seafloor mines by scour and fill have been conducted near the Woods Hole Oceanographic Institution's Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). The sedimentary environment at MVCO consists of a series of rippled scour depressions (RSDs), which are large scale bedforms with alternating areas of coarse and fine sand. This allows simultaneous mine burial experiments in both coarse and fine sand under almost identical hydrodynamic forcing conditions. Two preliminary sets of mine scour burial experiments were conducted during winters 2001?2002 in fine sand and 2002?2003 in coarse sand with a single optically instrumented mine in the field of view of a rotary sidescan sonar. From October 2003 to April of 2004, ten instrumented mines were deployed along with several sonar systems to image mine behavior and to characterize bedform and oceanographic processes. In fine sand, the sonar imagery of the mines revealed that large scour pits form around the mines during energetic wave events. Mines fell into their own scour pits, aligned with the dominant wave crests and became level with the ambient seafloor after several energetic wave events. In quiescent periods, after the energetic wave events, the scour pits episodically infilled with mud. After several scour and infilling events, the scour pits were completely filled and a layer of fine sand covered both the mines and the scour pits, leaving no visible evidence of the mines. In the coarse sand, mines were observed to bury until the exposed height above the ripple crests was approximately the same as the large wave orbital ripple height (wavelengths of 50?125 cm and heights of 10?20 cm). A hypothesis for the physical mechanism responsible for this partial burial in the presence of large bedforms is that the mines bury until they present roughly the same hydrodynamic roughness as the orbital-scale bedforms present in coarse sand.
    Description: This work was supported in part by the U.S. Office of Naval Research under Grants N00014-01-10564 and N0004-01-1-0847, by the Department of Defense Presidential Early Career Award, and by the U.S. Naval Research Laboratory (NRL) Core funding under Program 061115N.
    Keywords: Acoustic imaging ; Mine burial ; Scour ; Sediments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 2013-2027, doi:10.1121/1.1869073.
    Description: Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.
    Description: Support by the National Science Foundation through Award No. OCE-0002664, NOAA through Grant No. NA97OG0241, and the Cooperative Institute for Climate and Ocean Research (CICOR) through NOAA Contract No. NA17RJ1223 is acknowledged.
    Keywords: Sonar detection ; Sonar target recognition ; Underwater sound ; Calibration ; Array signal processing ; Acoustic transducer arrays ; Protocols
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-27
    Keywords: 85-573; Abundance estimate; Amphirhopalum ypsilon; Amphispyris roggentheni; Androspyris anthropiscus; Anthocyrtidium angulare; Axoprunum angelinum; Buccinosphaera invaginata; Collosphaera orthoconus; Collosphaera tuberosa; Deep Sea Drilling Project; DEPTH, sediment/rock; Disolenia sp.; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Lamprocyrtis heteroporos; Lamprocyrtis neoheteroporos; Lamprocyrtis nigriniae; Leg85; Lithopera bacca; North Pacific/TROUGH; Preservation; Pterocanium prismatium; Pterocorys hertwigii; Sample code/label; Stratigraphy; Theocorythium trachelium; Theocorythium vetulum
    Type: Dataset
    Format: text/tab-separated-values, 437 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-27
    Keywords: 85-572; Abundance estimate; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Impagidinium patulum; Impagidinium sp.; Leg85; North Pacific; Operculodinium israelianum; Sample code/label; Stratigraphy
    Type: Dataset
    Format: text/tab-separated-values, 7 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-27
    Keywords: 85-572C; Abundance estimate; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Impagidinium paradoxum; Leg85; North Pacific; Protoperidinium sp.; Sample code/label; Stratigraphy
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-27
    Keywords: 85-571; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg85; North Pacific; NRM, Declination; NRM, Declination after demagnetization; NRM, Inclination; NRM, Inclination after demagnetization; NRM, Intensity; NRM, Intensity after demagnetization; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 65 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-27
    Keywords: 85-572; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg85; North Pacific; NRM, Declination; NRM, Inclination; NRM, Intensity; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 88 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-27
    Keywords: 85-574; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg85; North Pacific/TROUGH; NRM, Declination; NRM, Declination after demagnetization; NRM, Inclination; NRM, Inclination after demagnetization; NRM, Intensity; NRM, Intensity after demagnetization; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 1593 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-27
    Keywords: 85-574A; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg85; North Pacific/TROUGH; NRM, Declination; NRM, Declination after demagnetization; NRM, Inclination; NRM, Inclination after demagnetization; NRM, Intensity; NRM, Intensity after demagnetization; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 1515 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...