GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (2)
Language
Years
Year
  • 1
    In: Journal of physical oceanography, Boston, Mass. [u.a.] : AMS, 1971, 38(2008), 1, Seite 177-192, 0022-3670
    In: volume:38
    In: year:2008
    In: number:1
    In: pages:177-192
    Type of Medium: Online Resource
    ISSN: 0022-3670
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 38 (1). pp. 177-192.
    Publication Date: 2020-08-04
    Description: The shallow subtropical–tropical cells (STC) of the Atlantic Ocean have been studied from the output fields of a 50-yr run of the German partner of the Estimating the Circulation and Climate of the Ocean (GECCO) consortium assimilation model. Comparison of GECCO with time-mean observational estimates of density and meridional currents at 10°S and 10°N, which represent the boundaries between the tropics and subtropics in GECCO, shows good agreement in transports of major currents. The variability of the GECCO wind stress in the interior at 10°S and 10°N remains consistent with the NCEP forcing, although temporary changes can be large. On pentadal and longer time scales, an STC loop response is found between the poleward Ekman divergence and STC-layer convergence at 10°S and 10°N via the Equatorial Undercurrent (EUC) at 23°W, where the divergence leads the EUC and the convergence, suggesting a “pulling” mechanism via equatorial upwelling. The divergence is also associated with changes in the eastern equatorial upper-ocean heat content. Within the STC layer, partial compensation of the western boundary current (WBC) and the interior occurs at 10°S and 10°N. For the meridional overturning circulation (MOC) at 10°S it is found that more than one-half of the variability in the upper limb can be explained by the WBC. The explained MOC variance can be increased to 85% by including the geostrophic (Sverdrup) part of the wind-driven transports.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...