GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
Document type
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 325-345, doi:10.1357/002224008786176016.
    Description: The properties of water mass transformation in a semi-enclosed basin, separated from the open ocean by a sill and subject to surface cooling, are analyzed both theoretically and numerically using an ocean general circulation model. This study extends previous studies of convection in a marginal sea to the case with a sill. The sill has a strong impact on both the properties of the dense water formed in the interior and on those of the waters flowing out the marginal sea. It results in a colder interior and colder outflow compared to the case with no sill. Dynamically, this is explained by considering that the sill limits the geostrophic contours over which the open ocean/marginal sea exchange can occur. The impact of the sill, however, is not simply limited to a topographic constriction; instead the sill also decreases the stability of the boundary current, which, in turn, results in relatively large heat flux into the interior and colder outflow. The theories that relate the properties of the dense waters formed in the interior, and those of the outflow, are modified to include the impact of the sill. These are found to compare well with the numerical simulations and provide a useful tool for the interpretation of these results. These idealized simulations capture the basic features of the water mass transformation processes in the Nordic Seas and, in particular, provide a dynamical explanation for the difference between the dense waters formed and the source of the overflows water.
    Description: DI was supported by the Polar Ocean Climate Processes (ProClim) project funded by the Norwegian Research Council. FS was supported by a visiting scientist fellowship from the Bjerknes Centre for Climate Research (Bergen, Norway) and by NSF Ocean Sciences Grant 0525929. Support for MAS was provided by NSF Office of Polar Programs Grant 0421904 and NSF Ocean Sciences Grant 0423975.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...