GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (29)
Document type
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Annals of Geophysics
    Publication Date: 2020-02-12
    Description: The ocean exerts a pervasive influence on Earths environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999). For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995). Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earths climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources) (Summerhayes, 1996). The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000). Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003). This paper is a world-wide review of the new emerging Seafloor Observatory Science, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A description of world-wide past and ongoing experiments, as well as concepts presently under study, is also given, with particular attention to European projects and to the Italian contribution. Finally, there is a discussion on Seafloor Observatory Science perspectives.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: High-resolution 3-D P and S-wave velocity models of a central sector of the Apennines (Central Italy) are computed by inverting first arrival times from an aftershock sequence (September–December, 1997) following the Mw 5.7 and Mw 6.0 Umbria-Marche earthquakes that occurred on September 26, 1997. The high quality of the data set, especially for the S-wave, allows us to compute 3-D variations in Vp, Vp/Vs and Vp · Vs. The anomalies can be interpreted as lateral changes in rock type and fracturing, which control fluid diffusion and variation in pore pressure. This is in agreement with a poro-elastic view that can be inferred from the spatio-temporal evolution of the seismic sequence.
    Description: Published
    Description: 61-4
    Description: open
    Keywords: Physical properties of rocks ; Seismicity and seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 246845 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The fruitful collaboration between Italian Research Institutions, particularly Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV) together with Marine Engineering Companies, led to the development of NEMOSN- 1, the first European cabled seafloor multiparameter observatory. This observatory, deployed at 2060m w.d. about 12 miles off-shore the Eastern coasts of Sicily (Southern Italy), is in real-time acquisition since January 2005 and addressed to different set of measurements: geophysical and oceanographic. In particular the SN-1 seismological data are integrated in the INGV land-based national seismic network, and they arrive in real-time to the Operative Centre in Rome. In the European Commission (EC) European Seafloor Observatory NETwork (ESONET) project, in connection to the Global Monitoring for Environment and Security (GMES) action plan, the NEMO-SN-1 site has been proposed as an European key area, both for its intrinsic importance for geo-hazards and for the availability of infrastructure as a stepwise development in GMES program. Presently, NEMO-SN-1 is the only ESONET site operative. The paper gives a description of SN-1 observatory with examples of data.
    Description: Published
    Description: 462-467
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor Observatory in real-time communication; ; Geo-hazard mitigation ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The GEOSTAR is a technological and scientific project aimed at the realisation of an autonomous benthic observatory able to perform long-term, continuous and integrated geophysical and environmental measurements in deep seafloors. The observatory is conceived to be a node of existing and future geophysical monitoring networks, making possible their extension offshore. The GEOSTAR observatory prototype hosts sensors for seismic, geomagnetic, gravimetric, geochemical and oceanographic researches up to abyssal depths (4000 m). The first 1-year scientific mission is foreseen within the end of the millennium in the abyssal plain (3400 m) of the Southern Tyrrhenian Sea, where key information about the geodynamics and oceanography of the whole Mediterranean basin can be acquired.
    Description: Published
    Description: 175-183
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor observatories ; Geophysics ; Water geochemistry ; Physical oceanography ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: From 2000 to 2005 two exploring geophysical missions were undertaken in the Tyrrhenian deep seafloor at depths between around -2000 and -3000 m in the framework of the European-funded GEOSTAR Projects. The considered missions in this work are GEOSTAR-2 and ORIONGEOSTAR-3 with the main scientific objective of investigating the deep-sea by means of an automatic multiparameter benthic observatory station working continuously from around 5 to 12 months each time. During the two GEOSTAR deep seafloor missions, scalar and vector magnetometers acquired useful magnetic data both to improve global and regional geomagnetic reference models and to infer specific geoelectric information about the two sites of magnetic measurements by means of a forward modelling.
    Description: In press
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: GEOSTAR ; Tyrrhenian Sea ; deep seafloor ; electrical conductivity ; lithosphere ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In the text
    Description: Published
    Description: Consiglio Nazionale delle Ricerche, Roma
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: Air-gun ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: During the cruise of the Italian research vessel URANIA on August 2007, a new tsunami detector was successfully deployed at 3200 b. s. l. in the Gulf of Cadiz, Portugal. The new detector is installed on board the multi-parameter abyssal observatory GEOSTAR. This activity is a task of NEAREST EC Project (http://nearest.bo.ismar.cnr.it/ ). Among other tasks, the NEAREST project will produce and test the basic parts of an operational prototype of a near field tsunami warning system. The warning system includes an onshore warning centre based on the seismic and tide gauges monitoring networks which are already operating in the area of Gulf of Cadiz and connected in real time with many warning receiving shore stations, a buoy equipped with meteostation and two way acoustic and satellite links, and the tsunami detector installed on board GEOSTAR. The warning centre is in charge of collecting, integrating, and evaluating data recorded at sea. In the observatory at the sea bottom, data are recorded and processed by the tsunami detector which includes a pressure sensor, a seismometer and two accelerometers. The observatory communicates acoustically with a surface buoy in two-way mode. The buoy is equipped with meteo station and GPS and it is connected to the shore station via satellite dual-link. The prototype is designed to operate in tsunami generation areas for detection-warning purpose as well as for scientific measurements during long term monitoring. The pressure data are processed in real time on the sea floor observatory by a tsunami detection algorithm able to detect small tsunami waves, less than one centimetre, in a very noisy environment. At the same time the seismic data are analysed using a STA/LTA algorithm. The tsunami detector sends a near real time automatic alert message when a seismic or a pressure signal exceeds a selectable threshold indicating a strong local earthquake or a tsunami wave event. After the detection of an event, the seafloor observatory will start sending updated pressure data to the shore station. Our objective is to combine a novel approach to the tsunami warning problem, with a study of the coupling between the water column perturbations and sea floor motion, together with the long term monitoring of geophysical, geochemical and oceanographic parameters.
    Description: Published
    Description: Vienna
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: open
    Keywords: tsunami detection ; tsunami warning ; seafloor observatory ; multiparameter ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: From 2000 to 2005 two geophysical exploration missions were undertaken in the Tyrrhenian deep seafloor at depths between -2000 and -3000 m in the framework of the European-funded GEOSTAR Projects. The considered missions in this work are GEOSTAR-2 and ORION-GEOSTAR-3 with the main scientific objective of investigating the deep-seafloor by means of an automatic multiparameter benthic observatory station working continuously from around 5 to 12 months each time. During the two GEOSTAR deep seafloor missions, scalar and vector magnetometers acquired useful magnetic data both to improve global and regional geomagnetic reference models and to infer specific geoelectric information about the two sites of magnetic measurements by means of a forward modelling.
    Description: Published
    Description: 57-63
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: GEOSTAR ; Tyrrhenian Sea ; deep seafloor ; electrical conductivity ; lithosphere ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories’ scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.
    Description: Published
    Description: 21-27
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Marine science and technology ; Multidisciplinary seafloor monitoring ; Permanent underwater network ; European research infrastructures ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Seismicity in Eastern Sicily as recorded by the Submarine Network-1 seafloor observatory (SN- 1) in the period from 2002 October to 2003 May is examined with the aim of identifying the as yet poorly known seismogenic zones placed in the Ionian basin, where some of the strongest earthquakes have occurred. A comparison between the seismic recordings of land networks and the seafloor station has allowed us to focus on low-magnitude seismicity only recorded by SN-1.We have analysed 239 high-quality events from among a total of 485 seismic signals not included in the land-based network bulletins. The waveform features and the possible source zones for those events are investigated by means of polarization and particle motion techniques. Most of the 239 events (213) are characterized by high values of rectilinearity typical of P- and S-arrival particle motions, while the remaining 26 events have different polarization features, with an emergent first phase and prevalently planar polarization.We have interpreted the latter signals as being associated to submarine landslides. From particle motion analysis, we have determined the azimuthal distribution of the events and the incidence angles of P waves in respect to the Observatory with the aim of determining their distribution in relation to the active but scarcely known structural setting of the off-shore area. Moreover, the integrated locations of some earthquakes occurring in the study area and recorded by SN-1 and land stations was performed to determine the apparent P-wave velocity necessary to calculate source-station distances. As an additional result of the integration, we have obtained more accurate locations of earthquakes occurring in the coastal and off-shore areas of Eastern Sicily, associated with reduced horizontal and vertical errors and significantly lower values of azimuthal gaps. Lastly, a location distribution of the 213 analysed events was obtained by setting two conditions: (1) a maximum epicentral distance to a fixed depth coinciding with the depth of the seafloor station and (2) a minimum epicentral distance associated to the maximum depth of events. Accordingly, two patterns of seismicity were determined for the maximum and the minimum expected spread of the hypocentres. The main features of both patterns are a diffuse seismicity in the Western Ionian basin with a major epicentre density SE of SN-1 and a depth of most of the events within 60 km. Local magnitude determination was also performed, taking into account an attenuation law proposed for Southeastern Sicily. Despite the uncertainties in the location distribution using single-station recordings, the results show diffuse seismicity all around SN-1 and, in particular, in the off-shore area.
    Description: Published
    Description: 490-501
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake locations ; Ionian Sea (off-shore Eastern Sicity) ; local seismicity ; seafloor observatory ; wave polarisation ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 580522 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...