GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (5)
  • Physics  (5)
Material
Language
Years
  • 2005-2009  (5)
Year
Subjects(RVK)
  • Physics  (5)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 10 ( 2005-05-15), p. 1449-1468
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 10 ( 2005-05-15), p. 1449-1468
    Abstract: Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. Despite the presence of some common deficiencies in this type of coupled model, zonal dipolelike variability is produced. During July through November, the dominant mode of variability of sea surface temperature resembles the observed zonal dipole and has out-of-phase rainfall variations across the Indian Ocean basin, which are as large as those associated with the model El Niño–Southern Oscillation (ENSO). In the positive dipole phase, cold SST anomaly and suppressed rainfall south of the equator on the Sumatra–Java coast drives an anticyclonic circulation anomaly that is consistent with the steady response (Gill model) to a heat sink displaced south of the equator. The northwest–southeast tilting Sumatra–Java coast results in cold sea surface temperature (SST) centered south of the equator, which forces anticylonic winds that are southeasterly along the coast, which thus produces local upwelling, cool SSTs, and promotes more anticylonic winds; on the equator, the easterlies raise the thermocline to the east via upwelling Kelvin waves and deepen the off-equatorial thermocline to the west via off-equatorial downwelling Rossby waves. The model dipole mode exhibits little contemporaneous relationship with the model ENSO; however, this does not imply that it is independent of ENSO. The model dipole often (but not always) develops in the year following El Niño. It is triggered by an unrealistic transmission of the model’s ENSO discharge phase through the Indonesian passages. In the model, the ENSO discharge Rossby waves arrive at the Sumatra–Java coast some 6 to 9 months after an El Niño peaks, causing the majority of model dipole events to peak in the year after an ENSO warm event. In the observed ENSO discharge, Rossby waves arrive at the Australian northwest coast. Thus the model Indian Ocean dipolelike variability is triggered by an unrealistic mechanism. The result highlights the importance of properly representing the transmission of Pacific Rossby waves and Indonesian throughflow in the complex topography of the Indonesian region in coupled climate models.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 19 ( 2009-10-01), p. 5046-5071
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 19 ( 2009-10-01), p. 5046-5071
    Abstract: The present study assesses the ability of climate models to simulate rainfall teleconnections with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD). An assessment is provided on 24 climate models that constitute phase 3 of the World Climate Research Programme’s Coupled Model Intercomparison Project (WCRP CMIP3), used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The strength of the ENSO–rainfall teleconnection, defined as the correlation between rainfall and Niño-3.4, is overwhelmingly controlled by the amplitude of ENSO signals relative to stochastic noise, highlighting the importance of realistically simulating this parameter. Because ENSO influences arise from the movement of convergence zones from their mean positions, the well-known equatorial Pacific climatological sea surface temperature (SST) and ENSO cold tongue anomaly biases lead to systematic errors. The climatological SSTs, which are far too cold along the Pacific equator, lead to a complete “nonresponse to ENSO” along the central and/or eastern equatorial Pacific in the majority of models. ENSO anomalies are also too equatorially confined and extend too far west, with linkages to a weakness in the teleconnection with Hawaii boreal winter rainfall and an inducement of a teleconnection with rainfall over west Papua New Guinea in austral summer. Another consequence of the ENSO cold tongue bias is that the majority of models produce too strong a coherence between SST anomalies in the west, central, and eastern equatorial Pacific. Consequently, the models’ ability in terms of producing differences in the impacts by ENSO from those by ENSO Modoki is reduced. Similarly, the IOD–rainfall teleconnection strengthens with an intensification of the IOD relative to the stochastic noise. A significant relationship exists between intermodel variations of IOD–ENSO coherence and intermodel variations of the ENSO amplitude in a small subset of models in which the ENSO anomaly structure and ENSO signal transmission to the Indian Ocean are better simulated. However, using all but one model (defined as an outlier) there is no systematic linkage between ENSO amplitude and IOD–ENSO coherence. Indeed, the majority of models produce an ENSO–IOD coherence lower than the observed, supporting the notion that the Indian Ocean has the ability to generate independent variability and that ENSO is not the only trigger of the IOD. Although models with a stronger IOD amplitude and rainfall teleconnection tend to have a greater ENSO amplitude, there is no causal relationship; instead this feature reflects a commensurate strength of the Bjerknes feedback in both the Indian and Pacific Oceans.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 8 ( 2009-04-15), p. 2240-2247
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 8 ( 2009-04-15), p. 2240-2247
    Abstract: Since 1951, late spring (May) rainfall over southeastern China (SEC) has decreased by more than 30% from its long-term average, in contrast to a rainfall increase in boreal summer. The dynamics have yet to be fully determined. This paper shows that as the Indo-Pacific enters into a La Niña phase, significant negative mean sea level pressure (MSLP) anomalies grow over the Indian Ocean and the western Pacific sector. The associated large-scale southwesterly anomalies transport moisture to the nearby South China Sea and the SEC region, contributing to a higher rainfall. A presence of a Philippine Sea anticyclonic (PSAC) pattern, arising from a decaying El Niño, strengthens the rain-conducive flow to SEC, but it is not a necessary condition. During the past decades, an increase in protracted El Niño events accompanied by a reduction in La Niña episodes has contributed to the May rainfall decline. The extent to which climate change is contributing is discussed.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Climate Vol. 21, No. 12 ( 2008-06-15), p. 2938-2959
    In: Journal of Climate, American Meteorological Society, Vol. 21, No. 12 ( 2008-06-15), p. 2938-2959
    Abstract: Since 1950, there has been an increase in rainfall over North West Australia (NWA), occurring mainly during the Southern Hemisphere (SH) summer season. A recent study using twentieth-century multimember ensemble simulations in a global climate model forced with and without increasing anthropogenic aerosols suggests that the rainfall increase is attributable to increasing Northern Hemisphere aerosols. The present study investigates the dynamics of the observed trend toward increased rainfall and compares the observed trend with that generated in the model forced with increasing aerosols. It is found that the observed positive trend in rainfall is projected onto two modes of variability. The first mode is associated with an anomalously low mean sea level pressure (MSLP) off NWA instigated by the enhanced sea surface temperature (SST) gradients toward the coast. The associated cyclonic flows bring high-moisture air to northern Australia, leading to an increase in rainfall. The second mode is associated with an anomalously high MSLP over much of the Australian continent; the anticyclonic circulation pattern, over northern Australia, determines that when rainfall is anomalously high, west of 130°E, rainfall is anomalously low east of this longitude. The sum of the upward trends in these two modes compares well to the observed increasing trend pattern. The modeled rainfall trend, however, is generated by a different process. The model suffers from an equatorial cold-tongue bias: the tongue of anomalies associated with El Niño–Southern Oscillation extends too far west into the eastern Indian Ocean. Consequently, there is an unrealistic relationship in the SH summer between Australian rainfall and eastern Indian Ocean SST: the rise in SST is associated with increasing rainfall over NWA. In the presence of increasing aerosols, a significant SST increase occurs in the eastern tropical Indian Ocean. As a result, the modeled rainfall increase in the presence of aerosol forcing is accounted for by these unrealistic relationships. It is not clear whether, in a model without such defects, the observed trend can be generated by increasing aerosols. Thus, the impact of aerosols on Australian rainfall remains an open question.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Climate Vol. 20, No. 4 ( 2007-02-15), p. 681-693
    In: Journal of Climate, American Meteorological Society, Vol. 20, No. 4 ( 2007-02-15), p. 681-693
    Abstract: Simulations by the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models on the Southern Hemisphere (SH) circulation are assessed over the period 1950–99, focusing on the seasonality of the trend and the level of its congruency with the southern annular mode (SAM) in terms of surface zonal wind stress. It is found that, as a group, the models realistically produce the seasonality of the trend, which is strongest in the SH summer season, December–February (DJF). The modeled DJF trend is principally congruent with the modeled SAM trend, as in observations. The majority of models produce a statistically significant positive trend, with decreasing westerlies in the midlatitudes and increasing westerlies in the high latitudes. The trend pattern from an all-experiment mean achieves highest correlation with that from the National Centers for Environmental Prediction (NCEP) data. A total of 48 out of the 71 experiments were run with ozone-depletion forcing, which offers an opportunity to assess the importance of ozone depletion in driving the late-twentieth-century trends. The AR4 model ensemble that contains an ozone-depletion forcing produces an averaged trend that is comparable to the trend from the NCEP outputs corrected by station-based observations. The trend is largely generated after the mid-1970s. Without ozone depletion the trend is less than half of that in the corrected NCEP, although the errors in the observed trend are large. The impact on oceanic circulation is inferred from wind stress curl in the group with ozone-depletion forcing. The result shows an intensification of the southern midlatitude supergyre circulation, including a strengthening East Australian Current flowing through the Tasman Sea. Thus, ozone depletion also plays an important role in the subtropical gyre circulation change over the past decades.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...