GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Harmful algal bloom  (3)
  • 2005-2009  (3)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. EHP is a publication of the United States government. Publication of EHP lies in the public domain and is therefore without copyright. The definitive version was published in Environmental Health Perspectives 109 Supplement 5 (2001): 695-698.
    Beschreibung: Public and political concerns about Pfiesteria from 1997 to the present vastly exceed the attention given to other harmful algal bloom (HAB) issues in the United States. To some extent, the intense focus on Pfiesteria has served to increase attention on HABs in general. Given the strong and continuing public, political, and research interests in Pfiesteria piscicida Steidinger & Burkholder and related organisms, there is a clear need for information and resources of many different types. This article provides information on Pfiesteria-related educational products and information resources available to the general public, health officials, and researchers. These resources are compiled into five categories: reports; website resources; state outreach and communication programs; fact sheets; and training manuals and documentaries. Over the last few years there has been rapid expansion in the amount of Pfiesteria-related information available, particularly on the Internet, and it is scattered among many different sources.
    Beschreibung: This research was supported by the following grants to D.M. Anderson: National Oceanic & Atmospheric Administration grant NA97OA0355 and U.S. Environmental Protection Agency grant X-82838701-0.
    Schlagwort(e): Communication and outreach ; Dinoflagellate ; Fish kill ; HAB ; Harmful algal bloom ; Pfiesteria ; Pfiesteria-like organisms ; Pfiesteria Interagency Coordination Workgroup (PICWG)
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: 549390 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 72 (2005): 351-360, doi:10.1016/j.aquatox.2005.01.007.
    Beschreibung: Chattonella marina, a harmful algal bloom (HAB) causative species, was used to study the mortality, physiology, and pathology of a marine stenohaline fish, goldlined seabream exposed to the toxic alga. The median lethal time (LT50) was 3 h upon exposure to 8000 cells/ml of C. marina. Significant induction of filamental chloride cells (CCs) [i.e. increases in CC fractional area and in the volume density of CCs], concomitant with significant reduction of blood osmolality, were found in C. marina treated fish. To verify whether the toxicity of C. marina was mediated through oxidative stress, a hydrogen peroxide exposure experiment was carried out and the toxicity as well as cytological and physiological changes were compared with the C. marina treatment. Hydrogen peroxide at a concentration of 500 μM H2O2, (i.e. 25 times higher than that produced by 8000 cells/ml of C. marina (20 μM H2O2)) was unable to induce similar CC alterations and osmoregulatory impairment in fish as observed in the C. marina treatment. Non-specific membrane damage such as severe loss of microvilli projections on the CC apical opening and rupture of epithelial membranes in the lamellae were observed. The LT50 was 6 h, two times longer than that with 8000 cells/ml of C. marina. Based on the cytological and physiological evidence and toxicity data, the mechanism by which C. marina kills fish appears to be very different from that caused by H2O2/ROS. Osmoregulatory distress is the major cause of fish death upon exposure to C. marina.
    Beschreibung: The work described in this paper was supported by a grant from the Research Grants Council (Project No. 9040547 CityU 1105/00M) and a grant from the University Grants Committee (Project No. AoE/P-04/04) of the Hong Kong Special Administrative Region, China. Support for D. Anderson was also provided by the US National Science Foundation through grant no. OCE-0136861.
    Schlagwort(e): Harmful algal bloom ; HAB ; Fish kill mechanism ; Osmoregulation ; Reactive oxygen species ; Quantitative ultrastructure ; Chattonella marina
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: 169788 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © Elsevier B.V, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V for personal use, not for redistribution. The definitive version was published in Harmful Algae 4 (2005): 123-138, doi:10.1016/j.hal.2003.12.008.
    Beschreibung: Harmful algal blooms (HABs) may be legitimate targets for direct control or mitigation, due to their impacts on commercial fisheries and public health. One promising control strategy is the rapid sedimentation of HABs through flocculation with clay. The objective of this study was to evaluate flow environments in which such a control strategy might be effective in removing harmful algae from the water column and depositing a layer of clay/algal flocs on the sea floor. We simulated the natural environment in two laboratory flumes: a straight-channel “17-m flume” in which flocs settled in a still water column and a “racetrack flume” in which flocs settled in flow. The 17-m flume experiments were designed to estimate the critical bed shear stress for resuspension of flocs that had settled for different time periods. The racetrack flume experiments were designed to examine the deposition and repeated resuspension of flocs in a system with tidal increases in flow speed. All flume runs were conducted with the non-toxic dinoflagellate Heterocapsa triquetra and phosphatic clay (IMC-P4). We repeated the experiments with a coagulant, polyaluminum hydroxychloride (PAC), expected to enhance the removal efficiency of the clay. Our experiments indicated that at low flow speeds (≤ 10 cm s-1), phosphatic clay was effective at removing algal cells from the water column, even after repeated resuspension. Once a layer of flocs accumulated on the bed, the consolidation, or dewatering, of the layer over time increased the critical shear stress for resuspension (i.e. decreased erodibility). Resuspension of a 2-mm thick layer that settled for 3 hours in relatively low flow speeds (≤ 3 cm s-1) would be expected at bed shear stress of ~0.06-0.07 Pa, as compared to up to 0.09 Pa for a layer that was undisturbed for 9 or 24 hours. For the same experimental conditions, the addition of PAC decreased the removal efficiency of algal cells in flow and increased the erodibility of flocs from the bottom. By increasing the likelihood that flocs remain in suspension, the addition of PAC in field trials of clay dispersal might have greater impact on sensitive, filter-feeding organisms. Overall, our experiments suggest that the flow environment should be considered before using clay as a control strategy for HABs in coastal waters.
    Beschreibung: This project was funded by the Florida Institute of Phosphate Research (Grant # 99-03-138), with facilities provided by the Rinehart Coastal Research Center at WHOI.
    Schlagwort(e): Flume ; Harmful algal bloom ; Heterocapsa triquetra ; Phosphatic clay ; Polyaluminum hydroxychloride ; Resuspension ; Sedimentation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: 271382 bytes
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...