GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (12)
Publikationsart
Schlagwörter
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2013, Vienna, 2013-04-07-2013-04-12Geophysical Research Abstracts
    Publikationsdatum: 2022-09-29
    Beschreibung: Swath bathymetry and seismic data reveal two slide scars providing evidence for large-scale mass-wasting on the continental slope off northwest Spitsbergen. The largest scar is approx. 35 km long, at least 16 km wide and located between 1300 and 3000 m water depth. The failure is assumed to be of a retrogressive nature, because it affected multiple stratigraphic levels up to at least 200 ms two-way-travel time (approx. 150 m) below the present seafloor. The second largest slope failure affected an area of at least 35 km length, up to 7 km width and 70 ms (approx. 55 m) thickness below 1400 m water depth. It cuts into the south-eastern sidewall of the largest scar between 2700 and 2800 m water depth and deposition of sediment lobes within the largest scar occurred. The bathymetry within this slide scar is relatively smooth compared to the largest scar, but single blocks are visible. These observations suggest a retrogressive configuration of this slide, too. Minor failures along the side walls occur. Both slide scars are filled in with approx. 15 m of acoustically stratified sediments, suggesting that the slope failures occurred almost synchronously. However, the sediment lobes beyond the lower limit of the second largest slide scar suggest that this slide occurred after the largest slide. The slides were most probably triggered by seismic activity leading to failure within contouritic sediments.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 15 (5). pp. 1945-1959.
    Publikationsdatum: 2017-09-15
    Beschreibung: We use new gas-hydrate geochemistry analyses, echosounder data, and three-dimensional P-Cable seismic data to study a gas-hydrate and free-gas system in 1200 m water depth at the Vestnesa Ridge offshore NW Svalbard. Geochemical measurements of gas from hydrates collected at the ridge revealed a thermogenic source. The presence of thermogenic gas and temperatures of similar to 3.3 degrees C result in a shallow top of the hydrate stability zone (THSZ) at similar to 340 m below sea level (mbsl). Therefore, hydrate-skinned gas bubbles, which inhibit gas-dissolution processes, are thermodynamically stable to this shallow water depth. This was confirmed by hydroacoustic observations of flares in 2010 and 2012 reaching water depths between 210 and 480 mbsl. At the seafloor, bubbles are released from acoustically transparent zones in the seismic data, which we interpret as regions where free gas is migrating through the hydrate stability zone (HSZ). These intrusions result in vertical variations in the base of the HSZ (BHSZ) of up to similar to 150 m, possibly making the shallow hydrate reservoir more susceptible to warming. Such Arctic gas-hydrate and free-gas systems are important because of their potential role in climate change and in fueling marine life, but remain largely understudied due to limited data coverage in seasonally ice-covered Arctic environments.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  [Talk] In: AGU Fall Meeting 2013, 09.-13.12.2013, San Francisco, USA .
    Publikationsdatum: 2014-01-07
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-01-07
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  [Talk] In: Underwater Acoustics UA 2013, 11.-14.06.2013, Corfu, Greece .
    Publikationsdatum: 2014-01-07
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    UNEP
    In:  In: Frozen Heat: a global outlook on methane gas hydrate. , ed. by Beaudoin, Y. C., Waite, W., Boswell, R. and Dallimore, S. R. UNEP, Nairobi, Kenya, pp. 51-75. ISBN 978-92-807-3429-4
    Publikationsdatum: 2015-12-18
    Materialart: Book chapter , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 116 . B05101.
    Publikationsdatum: 2018-04-27
    Beschreibung: Mud volcanoes are seafloor expressions of focused fluid flow that are common in compressional tectonic settings. New high-resolution 3-D seismic data from the Mercator mud volcano (MMV) and an adjacent buried mud volcano (BMV) image the internal structure of the top 800 m of sediment at both mud volcanoes, revealing that both are linked and have been active episodically. The total volumes of extruded mud range between 0.15 and 0.35 km3 and 0.02–0.05 km3 for the MMV and the BMV, respectively. The pore water composition of surface sediment samples suggests that halokinesis has played an important role in the evolution of the mud volcanoes. We propose that erosion of the top of the Vernadsky Ridge that underlies the mud volcanoes activated salt movement, triggering deep migration of fluids, dissolution of salt, and sediment liquefaction and mobilization since the end of the Pliocene. Since beginning of mud volcanism in this area, the mud volcanoes erupted four times while there was only one reactivation of salt tectonics. This implies that there are other mechanisms that trigger mud eruptions. The stratigraphic relationship of mudflows from the MMV and BMV indicates that the BMV was triggered by the MMV eruptions. This may either be caused by loading-induced hydrofracturing within the BMV or due to a common feeder system for both mud volcanoes. This study shows that the mud volcanoes in the El Arraiche mud volcano field are long-lived features that erupt with intervals of several tens of thousands of years.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-09-23
    Beschreibung: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised. Highlights ► Societies increasingly depend on timely information on ecosystems and natural hazards. ► Data is needed to improve climate-related uncertainty and geo-hazard early warning. ► Observatory networks coordinate and integrate the collection of standardised data. ► Ocean observatories provide opportunity for ocean science to evolve.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-07-26
    Beschreibung: The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to not, vert, similar500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at not, vert, similar160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    Publikationsdatum: 2024-04-18
    Schlagwort(e): Calculated from conductivity; Chlorophyll a; Chlorophyll fluorescence, Dr. Haardt Instruments; Conductivity; CTD, Neil Brown, Mark III B; CTD/Rosette; CTD-RO; CTD with attached oxygen sensor; CTD-yoyo; Date/Time of event; DEPTH, water; Elevation of event; Event label; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; M36/2; M36/2-CTD-177_001; M36/2-CTD-178_002; M36/2-CTD-178_003; M36/2-CTD-178_004; M36/2-CTD-178_005; M36/2-CTD-178_006; M36/2-CTD-178_007; M36/2-CTD-178_008; M36/2-CTD-179_009; M36/2-CTD-179_010; M36/2-CTD-180_011; M36/2-CTD-180_012; M36/2-CTD-181_013; M36/2-CTD-181_014; M36/2-CTD-182_015; M36/2-CTD-183_016; M36/2-CTD-183_017; M36/2-CTD-184_018; M36/2-CTD-184_019; M36/2-CTD-186_020; M36/2-CTD-186_021; M36/2-CTD-186_022; M36/2-CTD-186_023; M36/2-CTD-186_024; M36/2-CTD-186_025; M36/2-CTD-186_026; M36/2-CTD-188_028; M36/2-CTD-188_029; M36/2-CTD-189_030; M36/2-CTD-189_031; M36/2-CTD-190_032; M36/2-CTD-190_033; M36/2-CTD-190_034; M36/2-CTD-190_035; M36/2-CTD-191_036; M36/2-CTD-191_037; M36/2-CTD-193_038; M36/2-CTD-193_039; M36/2-CTD-194_040; M36/2-CTD-194_041; M36/2-CTD-194_042; met036_2_003; Meteor (1986); Oxygen; Pressure, water; Salinity; Temperature, water; Yoyo-CTD
    Materialart: Dataset
    Format: text/tab-separated-values, 468494 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...