GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (86)
  • 1
    Publication Date: 2013-11-22
    Description: The northeastern boundary of the Tibetan high plateau is marked by a 2 km topographic drop and a coincident rapid change in crustal thickness. Surface tectonics are dominated by the Kunlun strike-slip fault system and adjacent Kunlun concealed thrust. The main objective of the current study is to map lateral variations of seismic anisotropy parameters in this region along the linear INDEPTH IV array in order to investigate the link between surface and internal deformation in the context of crust and mantle structure. To achieve this aim, we performed Minimum-Transverse-Energy based SKS splitting measurements using 23 stations of the INDEPTH IV array deployed across the northeastern margin of Tibet. Average fast polarization directions and splitting time delays are obtained by averaging stacked misfit surfaces of all analyzed events at each station. The agreement of fast directions with the strikes of major active strike-slip faults and strike-slip focal mechanisms, but not with fossil structures such as the Jinsha suture, implies that the anisotropy records lithospheric petrofabric formed by recent deformation within the lithosphere rather than representing frozen-in anisotropy or shear within the asthenosphere due to absolute plate motion. The distribution of large splitting delays throughout the northern plateau suggests that deformation is distributed rather than focused onto narrow shear zones associated with the Kunlun strike-slip faults. The drop in splitting delays toward the Qaidam is then a natural consequence of the much lower degree of deformation there. Online Material: Individual splitting results interpreted in this paper.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-08
    Description: For a period of about 1 yr between the summers of 2010 and 2011, 25 broad-band seismographs were deployed in a roughly linear array across the eastern end of the Qaidam basin and the Qilian Shan in the northeastern Tibetan plateau. This region is probably the most suitable place to study the ongoing convergence interaction between the high Tibetan plateau and the main Asian continental plate. Low-frequency P receiver function analysis of the data provides an image of the crust and mantle down to 700 km depth. In addition to the Moho at 45–65 km depth beneath the profile, the 410 and 660 km discontinuities bounding the mantle transition zone can be identified at 400–410 and 650–660 km depths, respectively. A possible increase in temperature in the upper mantle thought to exist beneath the northern part of the high Tibetan plateau is thus confined to this part of the plateau and lower upper-mantle temperatures similar to those beneath southern Tibet occur beneath the Qaidam basin and Qilian Shan. When higher frequencies are included in the P receiver function analysis, a positive Ps converter dipping down to the south from 70–75 km depth at 37.9°N to about 110 km depth at 36°N is imaged. As this feature is only seen in high-frequency images and not in the low-frequency image, it is modelled as the positive Ps conversion from the base of an approximately 5-km-thick anisotropic layer at the top of the Asian mantle lithosphere which is currently subducting. This south-dipping converter continues to the south on the INDEPTH IV profile. S receiver function analysis completes the image of the structure below the Qilian Shan profile with the identification of the lithosphere–asthenosphere boundary (LAB). The LAB of the Asian Plate is identified for a reference slowness of 6.4 s deg –1 at 12–14 s (105–125 km depth) between 38 and 41°N below the northern part of the S receiver function profile. To the south it increases in depth such that it is at about 19 s (170 km depth) between 34 and 35°N at the southern end of the profile. The LAB of the Asian Plate occurs at similar depths on the INDEPTH IV profile at the latitudes where the INDEPTH IV and Qilian Shan profiles overlap. As on the INDEPTH IV profile to the south, between 34 and 35°N at the southern end of the Qilian Shan profile there is evidence from the S receiver functions for the LAB of a separate Tibetan Plate.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  72. Jahrestagung der Deutschen Geophysikalischen Gesellschaft (DGG) (Hamburg 2012)
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: The Dead Sea Transform (DST) is a major left-lateral strike-slip fault that accommodates the relative motion between the African and Arabian plates, connecting a region of extension in the Red Sea to the Taurus collision zone in Turkey over a length of about 1100 km. The Dead Sea Basin (DSB) is one of the largest basins along the DST. The DSB is a morphotectonic depression along the DST, divided into a northern and a southern sub-basin, separated by the Lisan salt diapir. We report on a receiver function study of the crust within the multidisciplinary geophysical project, DEad Sea Integrated REsearch (DESIRE), to study the crustal structure of the DSB. A temporary seismic network was operated on both sides of the DSB between 2006 October and 2008 April. The aperture of the network is approximately 60 km in the E—W direction crossing the DSB on the Lisan peninsula and about 100 km in the N—S direction. Analysis of receiver functions from the DESIRE temporary network indicates that Moho depths vary between 30 and 38 km beneath the area. These Moho depth estimates are consistent with results of near-vertical incidence and wide-angle controlled-source techniques. Receiver functions reveal an additional discontinuity in the lower crust, but only in the DSB and west of it. This leads to the conclusion that the internal crustal structure east and west of the DSB is different at the present-day. However, if the 107 km left-lateral movement along the DST is taken into account, then the region beneath the DESIRE array where no lower crustal discontinuity is observed would have lain about 18 Ma ago immediately adjacent to the region under the previous DESERT array west of the DST where no lower crustal discontinuity is recognized.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  33rd General Assembly of the European Seismological Commission - GA ESC (Moscow 2012)
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Seismological imaging has identified the Indian lithosphere penetrating underneath Tibet up to 500km to the north and to a depth of at least 200km along a front that is more than 1000km long. This is a classical case of continental subduction. In contrast, the collision of Tibet with the stable Tarim Basin in the north-west caused thickening of the Tibetan lithosphere to about 200km, whereas collision with the Sichuan Basin in the east caused thinning of the Tibetan lithosphere to about 70km. No sufficient seismic data on the mantle lithosphere have been available up to now at the boundary of Tibet to the Qaidam Basin, where subduction of the Asian lithosphere beneath Tibet was suggested. We report on results from a recent seismic passive source experiment in this region, which continued the series of INDEPTH experiments to the Qaidam Basin in the north-east. We used the S receiver function technique for data analysis, which is especially sensitive for observations of the lithosphere-asthenosphere boundary (LAB). As a surprising result, we found evidence that a newly identified relatively thin Tibetan lithosphere is overriding the flat subducting Asian lithosphere.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...