GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Water conservation -- Arid regions. ; Electronic books.
    Description / Table of Contents: This book presents a comprehensive description of the hydrogeology and hydrologic processes at work in arid lands. It describes the techniques that can be used to assess and manage the water resources of these areas with an emphasis on groundwater resources.
    Type of Medium: Online Resource
    Pages: 1 online resource (1068 pages)
    Edition: 1st ed.
    ISBN: 9783642291043
    Series Statement: Environmental Science and Engineering Series
    Language: English
    Note: Intro -- Arid Lands Water Evaluationand Management -- Preface -- Acknowledgments -- Contents -- Part I Arid Regions Water Management andIssues -- Part II Arid Lands Geology and Hydrogeology:An Overview -- Part III Water Budget and Recharge -- Part IV Water Resources Assessment Methods -- Part V Water Management Techniques -- Part VI Desalination -- Part VII Wastewater Reuse in Arid Lands -- Part VIII Water Policy and Management -- Part IX Global Climate Change -- Part X Conclusions -- Curriculum Vitae -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-01
    Description: The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean {delta}18O = +3.91{per thousand} V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the Avon Park Formation and elsewhere: (1) volume-for-volume replacement at a crystal scale, (2) coupled growth of dolomite crystals and dissolution of host calcium carbonate matrix, and (3) automorphic replacement by euhedral dolomite crystals. The force-of-crystallization model also does not require an influx of externally derived water that is undersaturated with respect to calcite to dissolve calcite, a fact that could simplify diagenetic models of porosity generation in dolostones. The later addition of external carbonate can result in a substantial reduction in porosity by the precipitation of dolomite cement, which could convert a high porosity sucrosic dolostone into a dense "Paleozoic type" dolostone.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...