GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 118(4), pp. 2546-2556, ISSN: 0148-0227
    Publication Date: 2016-11-15
    Description: The roughness of a glacier bed has high importance for the estimation of the sliding velocity and can also provide valuable insights into the dynamics and history of ice sheets, depending on scale. Measurement of basal properties in present-day ice sheets is restricted to ground-penetrating radar and seismics, with surveys retrieving relatively coarse data sets. Deglaciated areas, like the Barents Sea, can be surveyed by shipborne 2-D and 3-D seismics and multibeam sonar and provide the possibility of studying the basal roughness of former ice sheets and ice streams with high resolution. Here, for the first time, we quantify the subglacial roughness of the former Barents Sea ice sheet by estimating the spectral roughness of the basal topography. We also make deductions about the past flow directions by investigating how the roughness varies along a 2-D line as the orientation of the line changes. Lastly, we investigate how the estimated basal roughness is affected by the resolution of the basal topography data set by comparing the spectral roughness along a cross section using various sampling intervals. We find that the roughness typically varies on a similar scale as for other previously marine-inundated areas in West Antarctica, with subglacial troughs having very low roughness, consistent with fast ice flow and high rates of basal erosion. The resolution of the data set seems to be of minor importance when comparing roughness indices calculated with a fixed profile length. A strong dependence on track orientation is shown for all wavelengths, with profiles having higher roughness across former flow directions than along them.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-13
    Description: As ice flows over a subglacial lake, the drop in bed resistance leads to an increase in ice velocity and a subsequent lowering of the ice surface in the vicinity of the upstream lake edge. Conversely, at the downstream end of the lake a small hump is observed as the ice velocity decreases near the point of contact with land. There are two contributions arising from the ice/lake interaction: (1) changes in the thermal regime that propagate downwards with the advection of ice and (2) the increase in flow speeds caused by basal sliding over the lake surface. Sediment transport from upstream areas into subglacial lakes changes their size, thus reducing the area of the ice/lake interface. Here, we aim to study the effect that this reduction in size has on the flow dynamics and the surface elevation of an artificial ice stream and the temporal evolution of this effect. To this end, we use a full-Stokes, polythermal ice flow model, implemented into the commercial finite element software COMSOL Multiphysics. An enthalpy gradient method is used in order to account for the evolution of temperature and water content within the ice. This conceptual model uses prescribed boundary velocity and temperature profiles and a Weertman-type sliding law with a fixed parameter combination. In order to separate the effect of the slow thermal contribution from the fast mechanical one, we will present sensitivity tests that additionally involve a thermally-constant flow.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...