GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (4)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-09-23
    Beschreibung: The stable silicon isotopic composition (δ30Si) of waters and diatoms has increasingly been used to investigate the biogeochemical cycling of Si in the major ocean basins. Here we present the first Si isotope data set from the northern South China Sea (NSCS), a large marginal sea system in the western North Pacific to examine sources and utilization of silicic acid (Si(OH)4). During two cruises in July–August 2009 (summer) and January 2010 (winter), samples for isotope measurements of dissolved Si(OH)4 (δ30SiSi(OH)4) and of biogenic silica (δ30SiBSi) in suspended particles were collected along a transect perpendicular to the coast from the inner shelf to the deep-water slope, as well as at the South East Asian Time-series Study (SEATS) station located in the NSCS basin. Surface δ30SiSi(OH)4 generally increased from values ∼+2.3‰ on the inner shelf to ∼+2.8‰ above the deep basin, suggesting an increasing utilization of dissolved Si(OH)4 reflecting the transition from eutrophic to oligotrophic conditions. The δ30SiBSi values were systematically lower than the corresponding δ30SiSi(OH)4 in the euphotic zone (above 100 m) on the shelf and slope. In contrast at station SEATS in the NSCS basin, δ30SiBSi signatures in both seasons were within error equal to δ30SiSi(OH)4 in the surface mixed layer (above 50 m) and δ30SiBSi in waters below were significantly higher than the corresponding δ30SiSi(OH)4. By comparing the field data with the Si isotope fractionation revealed by the Rayleigh or the steady state models, we demonstrate the existence of variable Si(OH)4 origins in different areas of the NSCS. Surface waters on the inner shelf were largely fed by nutrients from the Pearl River input. While the primary source of Si(OH)4 for the euphotic zone on the outer shelf and slope was upwelling or vertical mixing from underlying waters, the Si(OH)4 in the surface mixed layer of the NSCS basin might have originated from horizontal mixing with other highly fractionated surface waters. As a consequence, the Si isotope dynamics in the NSCS are largely controlled by variable biological fractionation of Si in waters from different sources with different initial Si isotopic compositions rather than any single source water.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-02-27
    Beschreibung: OS51C-1004 Dissolved radiogenic Nd isotopes (εNd), rare earth element (REE), Ba, and nutrient concentrations combined with oxygen isotopes retrieved along a section between Spitsbergen and Greenland at approximately 79°N during the ARK XXVII/1 cruise in 2012 were measured to characterize the origin and mixing of the water masses in the Fram Strait. Deep waters below 500 m are nearly constant in Nd concentration (CNd) around 16 pmol/kg and εNd signatures range from -9.5±0.2 to -10.9±0.2. The heavy REE to light REE ratio (HREE/LREE) ranges from 4 to 5. Ba concentrations range from 47 to 58 nmol/kg, increasing slightly with depth. These homogeneous signatures do not allow identification of distinct deep water masses. The upper 500 m of the water column close to the Western Svalbard margin including the shelf is relatively warm and saline (T ≤ 5.5°C, S ≤ 35.1) and shares characteristics of Atlantic Water (AW) including low CNd (~15 pmol/kg) and relatively unradiogenic εNd signatures (-12.2±0.2). This water is also characterized by HREE/LREE around 4 and CBa around 50 nmol/kg. Low salinity surface waters on the East Greenland shelf have unradiogenic εNd signatures similar to AW (-12.4±0.3) but in contrast to AW high CNd of up to 37 pmol/kg. At the same time the HREE/LREE ratio is relatively low (~3.5) and CBa reaches 73 nmol/kg. This suggests a significant freshwater contribution either from the McKenzie or the Lena rivers. Eastwards of these freshwater-influenced waters (at ~5°W), admixture of a Pacific component characterized by a more radiogenic εNd (-8.8±0.2) and high nutrient concentrations outcropping at surface was detected. Waters of the same origin are present on the East Greenland shelf at about 150 m depth. Based on these data we use mass balance calculations to determine the fractions of sea ice meltwater, Eurasian run-off, North American run-off, and Arctic seawater and compare these results with our εNd and REE data.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  [Poster] In: 2012 Ocean Sciences Meeting, OSM, 20.02.-24.02.2012, Salt Lake City, Utah, USA . 2012 Ocean Sciences Meeting : abstract book ; February 20-24. 2012 ; Salt Palace Convention Center, Salt Lake City, Utah, USA ; ID 10110 .
    Publikationsdatum: 2012-11-29
    Beschreibung: Abstract ID: 10110 PosterID: B1276 We measured for the first time seawater δ30SiSi(OH)4 and δ30SiBSi to examine sources and utilization of Si(OH)4 in the northern South China Sea (NSCS). δ30SiBSi values were systematically lower than the correspondingδ30SiSi(OH)4 in the euphotic zone (〈 100 m) on the shelf and slope. In contrast, δ30SiBSi were equal to δ30SiSi(OH)4 in the surface mixed layer (〈 50 m) of the deep basin and δ30SiBSi in waters below were significantly higher than the corresponding δ30SiSi(OH)4. By comparing the field data with calculation according to Rayleigh or steady state models, we demonstrated surface waters on the inner shelf were largely fed by nutrients from the Pearl River input. While the primary Si(OH)4 source for the euphotic zone on the outer shelf and slope was upwelling or mixing from underlying waters, the Si(OH)4 in the surface mixed layer of the NSCS basin might originate from horizontal mixing with highly fractionated waters. As a consequence, the Si isotope dynamics in the NSCS are largely modulated by variable biological fractionation of Si derived from different mixing-induced initial conditions rather than any single source water.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  [Poster] In: AGU Fall Meeting 2014, 15.-19.12.2014, San Francisco, USA .
    Publikationsdatum: 2015-07-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...