GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (4)
Document type
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool – the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ~1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Format: application/msword
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 11 (2013): 62-78, doi:10.4319/lom.2013.11.62.
    Description: Atmospheric deposition of trace elements and isotopes (TEI) is an important source of trace metals to the open ocean, impacting TEI budgets and distributions, stimulating oceanic primary productivity, and influencing biological community structure and function. Thus, accurate sampling of aerosol TEIs is a vital component of ongoing GEOTRACES cruises, and standardized aerosol TEI sampling and analysis procedures allow the comparison of data from different sites and investigators. Here, we report the results of an aerosol analysis intercalibration study by seventeen laboratories for select GEOTRACES-relevant aerosol species (Al, Fe, Ti, V, Zn, Pb, Hg, NO3 , and SO42 ) for samples collected in September 2008. The collection equipment and filter substrates are appropriate for the GEOTRACES program, as evidenced by low blanks and detection limits relative to analyte concentrations. Analysis of bulk aerosol sample replicates were in better agreement when the processing protocol was constrained (± 9% RSD or better on replicate analyses by a single lab, n = 7) than when it was not (generally 20% RSD or worse among laboratories using different methodologies), suggesting that the observed variability was mainly due to methodological differences rather than sample heterogeneity. Much greater variability was observed for fractional solubility of aerosol trace elements and major anions, due to differing extraction methods. Accuracy is difficult to establish without an SRM representative of aerosols, and we are developing an SRM for this purpose. Based on these findings, we provide recommendations for the GEOTRACES program to establish consistent and reliable procedures for the collection and analysis of aerosol samples.
    Description: This work was partially funded by the following sources: US National Science Foundation (NSF) grant OCE- 0752832 (PLM, WML, and AM), National Science Council Taiwan grant 100-2628-M-001-008-MY4 (SCH), US NSF grant OCE-1137836 (AMA-I), United Kingdom Natural Environmental Research Council (NERC) grant NE/H00548X/1 (AR Baker), Australian Government Cooperative Research Centres Programme (AR Bowie), US NSF grant OCE-0824304 (CSB and Adina Paytan), US NSF grants OCE-0825068 and OCE- 0728750 (SG and Robert Mason), US NSF grant OCE-0961038 (MGH), US NSF grant OCE-0752609 (MH and Christopher Measures), US NSF grant ATM-0839851 (AMJ), US NSF grant OCE-1031371 (CM), UK NERC grant NE/C001931/1 (MDP and Eric Achterberg), US NSF grant OCE-1132515 (GS and Carl Lamborg), US NSF grant OCE-0851462 (AV and Thomas Church), and US NSF grant OCE-0623189 (LMZ). This paper is part of the Intercalibration in Chemical Oceanography special issue of L&O Methods that was supported by funding from the US National Science Foundation, Chemical Oceanography Program (grant OCE-0927285 to Gregory Cutter).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to bioavailability is the proportion of aerosol iron that enters the oceanic dissolved iron pool – the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and %FeS values for ~1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including new data from the Atlantic Ocean. The global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data falling along an inverse hyperbolic trend. The large dynamic range in %FeS (0-95%) varies with FeT in a manner similar to that identified for aerosols collected in the Sargasso Sea by Sedwick et al. (2007), who posit that the trend reflects near-conservative mixing between air masses that carry lithogenic mineral dust (with high FeT and low %FeS) and non-soil-dust aerosols such as anthropogenic combustion emissions (with low FeT and high %FeS), respectively. An increasing body of empirical evidence points to the importance of aerosol source and composition in determining the fractional solubility of aerosol iron, such that anthropogenic combustion emissions appear to play a critical role in determining this parameter in the bulk marine aerosol. The robust global-scale relationship between %FeS and FeT may provide a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Format: application/msword
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 89 (2012): 173-189, doi:10.1016/j.gca.2012.04.022.
    Description: Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool – the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ~1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...