GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (6)
  • 1
    Publication Date: 2014-04-15
    Description: Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-09-17
    Description: Atmospheric deposition of trace elements and isotopes (TEI) is an important source of trace metals to the open ocean, impacting TEI budgets and distributions, stimulating oceanic primary productivity, and influencing biological community structure and function. Thus, accurate sampling of aerosol TEIs is a vital component of ongoing GEOTRACES cruises, and standardized aerosol TEI sampling and analysis procedures allow the comparison of data from different sites and investigators. Here, we report the results of an aerosol analysis intercalibration study by seventeen laboratories for select GEOTRACES-relevant aerosol species (Al, Fe, Ti, V, Zn, Pb, Hg, NO3-, and SO42-) for samples collected in September 2008. The collection equipment and filter substrates are appropriate for the GEOTRACES program, as evidenced by low blanks and detection limits relative to analyte concentrations. Analysis of bulk aerosol sample replicates were in better agreement when the processing protocol was constrained (+/- 9% RSD or better on replicate analyses by a single lab, n = 7) than when it was not (generally 20% RSD or worse among laboratories using different methodologies), suggesting that the observed variability was mainly due to methodological differences rather than sample heterogeneity. Much greater variability was observed for fractional solubility of aerosol trace elements and major anions, due to differing extraction methods. Accuracy is difficult to establish without an SRM representative of aerosols, and we are developing an SRM for this purpose. Based on these findings, we provide recommendations for the GEOTRACES program to and macro-nutrients to the open ocean (Okin et al. 2011) and is a key component of the international GEOTRACES program (GEOTRACES Planning Group 2006). A priority of the GEOTRACES program is to quantify both major and trace elements (e. g., Al, Fe, Ti, V, Zn, Pb, and Hg) and species such as nitrate and sulfate in marine aerosols. Therefore, marine aerosol samples collected during GEOTRACES cruises must follow sampling protocols that permit the collection and analysis of as many elements and compounds as possible, while meeting the constraints associated with basin-wide oceanographic cruises (e. g., space limitations, high-frequency sampling, etc.).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-11
    Description: A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17 +/- 0.05 nM (n = 14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10-70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52-6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of beta'(FE3+(NN)3) increased linearly with increasing pH according to log beta'(FE3+(NN)3) = 2.4 +/- 0.6 x pH + 11.9 +/- 3.5 (salinity =2.9, T= 20 degrees C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 mu M of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2 +/- 4.1 nM equivalent of Fe(III) to 336.2 +/- 19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe3+, varied from 21.1 +/- 0.2 to 22.8 +/- 0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-04
    Description: The global tropospheric budget of gaseous and particulate non-methane organic matter (OM) is re-examined to provide a holistic view of the role that OM plays in transporting the essential nutrients nitrogen and phosphorus to the ocean. A global 3-dimensional chemistry-transport model was used to construct the first global picture of atmospheric transport and deposition of the organic nitrogen (ON) and organic phosphorus (OP) that are associated with OM, focusing on the soluble fractions of these nutrients. Model simulations agree with observations within an order of magnitude. Depending on location, the observed water soluble ON fraction ranges from similar to 3% to 90% (median of similar to 35%) of total soluble N in rainwater; soluble OP ranges from similar to 20-83% (median of similar to 35%) of total soluble phosphorus. The simulations suggest that the global ON cycle has a strong anthropogenic component with similar to 45% of the overall atmospheric source (primary and secondary) associated with anthropogenic activities. In contrast, only 10% of atmospheric OP is emitted from human activities. The model-derived present-day soluble ON and OP deposition to the global ocean is estimated to be similar to 16 Tg-N/yr and similar to 0.35 Tg-P/yr respectively with an order of magnitude uncertainty. Of these amounts similar to 40% and similar to 6%, respectively, are associated with anthropogenic activities, and 33% and 90% are recycled oceanic materials. Therefore, anthropogenic emissions are having a greater impact on the ON cycle than the OP cycle; consequently increasing emissions may increase P-limitation in the oligotrophic regions of the world's ocean that rely on atmospheric deposition as an important nutrient source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-27
    Description: Dissolved iron (dFe) distributions and atmospheric and vertical subduction fluxes of dFe were determined in the upper water column for two meridional transects of the Atlantic Ocean. The data demonstrate the disparity between the iron biogeochemistry of the North and South Atlantic Ocean and show well-defined gradients of size fractionated iron species in surface waters between geographic provinces. The highest dFe and lowest mixed layer residence times (0.4–2.5 years) were found in the northern tropical and subtropical regions. In contrast, the South Atlantic Gyre had lower dFe concentrations (〈0.4 nM) and much longer residence times (〉5 years), presumably due to lower atmospheric inputs and more efficient biological recycling of iron in this region. Vertical input fluxes of dFe to surface waters ranged from 20 to 170 nmol m–2 d–1 in the North Atlantic and tropical provinces, whereas average fluxes of 6–13 nmol m–2 d–1 were estimated for the South Atlantic. Our estimates showed that the variable dFe distribution over the surface Atlantic (〈0.1–2.0 nM) predominantly reflected atmospheric Fe deposition fluxes (〉50% of total vertical Fe flux to surface waters) rather than upwelling or vertical mixing. This demonstrates the strength of the connection between land-derived atmospheric Fe fluxes and the biological cycling of carbon and nitrogen in the Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  In: Ocean-Atmosphere Interactions of Gases and Particles. , ed. by Liss, P. S. and Johnson, M. T. Springer, Berlin [u.a.], pp. 247-306. ISBN 978-3-642-25642-4
    Publication Date: 2016-03-30
    Description: Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...