GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (16)
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (222 Seiten) , Illustrationen
    DDC: 570
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Pero Publishing House
    In:  , ed. by Yermakov, I. P. Pero Publishing House, Moscow, Russia, 51 pp. ISBN 978-5-906883-16-2
    Publication Date: 2019-02-01
    Type: Book , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-30
    Description: The genus Ulva is has broadly negative connotations because of its ability to form harmful “green tides” and the problems it causes with precise species identification, due to its morphological plasticity. During recent years, tides of unattached Ulva compressa U. Linneus 1753 with an atypical sheet-like morphology were for the first time observed in the German Baltic. Here we report that this nuisance alga is conspecific with the type strain of U. mutabilis Föyn 1958 from Faro in Portugal, an important model organism to study morphogenesis, morphogenetics and mutualistic interactions. Different approaches were used to examine conspecificity: (1) Comparisons on vegetative and reproductive features of cultured material of Ulva mutabilis and German Ulva compressa resulted in congruent results proving that a certain morphogenetic mutation pattern is shared. Spontaneous mutations of “slender-like” thalli are appearing whilst the common form exhibits a “leaf-like” wildtype morphology. (2) Interbreeding experiments of gametes of Ulva compressa and Ulva mutabilis were successful and showed a fertile first-generation offspring exhibiting the typical wildtype morphology similar to the phenotype of the parental generation. (3) Phylogenetic and species delimitation analyses were carried out on 128 tufA sequences of Ulva compressa specimens sampled in 2014–2016 in Germany and on tufA sequences of two clones of the strains Ulva mutabilis (sl-G[mt+]) and Ulva mutabilis (wt-[mt-]) to identify Molecular Operational Taxonomic Units (MOTUs). The Generalized Mixed Yule-Coalescent (GMYC) method comprises one major MOTU containing all included sequences of Ulva compressa and Ulva mutabilis, while reference sequences included in the analysis clustered outside this MOTU. This highly supports the monophyly of Ulva compressa and Ulva mutabilis, which can be treated as the same species. As a consequence, U. mutabilis is also a suitable model for future studies of green tides and their molecular and morphogenetic basis in the Baltic Sea.
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: In this doctoral project, I investigated the recent inventory, distribution and phylogenetic relationships of Ulva sensu lato in northern Germany, including sampling sites at the Baltic Sea, Wadden Sea and on Helgoland. Furthermore, I compared the recent results with historic findings. Therfore, this thesis constitutes a complete revision of the species inventory of Ulva sensu lato in northern Germany. Assessments of biodiversity were based on both the analysis of classical morphological characters and DNA barcoding. Phylogenetic analysis of more than 370 sequences of the tufA marker gene revealed the presence of 20 different species in German waters.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Combined genetic, morphological and ontogenetic observations show that the circumarctic boreal green algal macrophyte Kornmannia leptoderma has expanded its distribution range into the Baltic Sea, on a German coastal section of 220 km length. The species is also again (or still) established at its former extreme southern distribution limit in the North Sea, the German island of Helgoland, where it has not been detected during the last four decades. Macroscopic visible sporophytes of K. leptoderma are nowadays present in the Baltic Sea and at Helgoland from February to September, while they were in the past only detected from February to May at Helgoland. This capacity for formation of sporophytes in summer correlates with the circumstance that K. leptoderma from the Baltic Sea can complete its life cycle at 15°C while several studies conducted decades ago with material from Helgoland and from Pacific coasts consistently reported an inhibition of the algal gametogenesis at temperatures that exceed 12°C. Possibly K. leptoderma has undergone adaptations that facilitate its spread into warmer environments, unless the Kornmannia present in the Baltic Sea and on Helgoland today represents a newly introduced cryptic species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: The Kiel Canal is one of the world’s most frequently used inland waterways and connects the SW Baltic Sea with the Wadden Sea. At the same time, the canal is a highly eutrophicated environment that is characterized by salinities that range from 3 to 16. This brackish character could make the Kiel Canal an important stepping stone for the introductions of species into the inner Baltic Sea. It could also hinder the identification of native and introduced species, given the fact that salinity sometimes severely affects algal morphology. Here we report on a survey of introduced and native seaweed species in the canal, focusing on the dominant groups, which are Fucales and Ulvales. Of the Fucales, the introduced species Fucus evanescens was detected nearly exclusively inside the canal, while Fucus vesiculosus dominated rockweed communities directly outside the sluice gates. Morphological analysis and genetic barcoding distinguished three species of Ulvales, Ulva linza, Ulva intestinalis and an unknown and possibly introduced species of the genus Blidingia. Species distributions and – in the case of U. intestinalis – branching patterns were clearly affected by salinity, while thallus sizes appeared to be affected by the specific eutrophication status of sites within the canal.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: To resolve historical misinterpretations of species descriptions and to comprehend the morphological diversity together with the distribution of Ulva compressa Linnaeus in northern Germany, a morphological and molecular study was undertaken of recently collected specimens and herbarium vouchers. Phylogenetic analyses from sequences of the plastid encoded tufA gene confirmed that U. compressa is abundant along the German Baltic Sea and North Sea coasts. We were able to genetically confirm the presence of U. compressa in the Baltic Sea below salinities of 15 PSU. However, we detected morphologies agreeing with the attached and branched tubular type material only in the North Sea, while U. compressa on Baltic Sea coasts indiscriminately exhibited a very distinct morphology of sheet-like thalli that were always unattached, with the exception of one collection site. Drifting forms were also frequently detected in the Wadden Sea, but not on the island of Helgoland. The tufA sequences of attached and tubular forms of U. compressa from the German Wadden Sea were identical to the drifting sheets found in the Wadden and Baltic Seas and the sequence divergence was extremely small at ≤0.9%. The proliferating, blade-like thalli of U. compressa appear as a nuisance ecotype that is able to form massive accumulations associated with oxygen depletion. Mass accumulations were observed to cause severe damage and increased mortality of habitat forming Zostera and Ruppia populations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: As one of the most abundant and ubiquitous representatives of marine and brackish coastal macrophytobenthos communities, the genus Ulva is not only an important primary producer but also of ecological and morphogenetic interest to many scientists. Ulva mutabilis became an important model organism to study morphogenesis and mutualistic interactions of macroalgae and microorganisms. Here, we report that our collections of Ulva compressa Linnaeus (1753) from Germany are conspecific with the type strains of the model organism U. mutabilis Føyn (1958), which were originally collected at Olhão on the south coast of Portugal and have from that time on been maintained in culture as gametophytic and parthenogenetic lab strains. Different approaches were used to test conspecificity: (i) comparisons of vegetative and reproductive features of cultured material of U. mutabilis and German U. compressa demonstrated a shared morphological pattern; (ii) gametes of U. compressa and U. mutabilis successfully mated and developed into fertile sporophytic first‐generation offspring; (iii) molecular phylogenetics and species delimitation analyses based on the Generalized Mixed Yule‐Coalescent method showed that U. mutabilis isolates (sl‐G[mt+]) and (wt‐G[mt‐]) and U. compressa belong to a unique Molecular Operational Taxonomic Unit. According to these findings, there is sufficient evidence that U. mutabilis and U. compressa should be regarded as conspecific.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: DNA barcoding analysis, using tufA, revealed considerable differences between the expected and observed species inventory of Ulva sensu lato in the Baltic and North Sea areas of the German state of Schleswig-Holstein. Of 20 observed genetic entities, at least four (U. australis, U. californica, U. gigantea and Umbraulva dangeardii) had been introduced recently, whereas three others (one Ulva sp. and two Blidingia spp.) could not be identified at the species level and could also represent recently introduced species. In addition, the observed distributions of Kornmannia leptoderma and U. rigida were much more extensive than indicated by historical records, whereas Blidingia minima and Gayralia oxysperma were absent or much less common than expected. Barcoding analysis also revealed that both U. tenera (type material) and U. pseudocurvata (historical vouchers) from Helgoland, an off-shore island in the North Sea, actually belong to U. lactuca, a species that appears to be restricted to this island. Furthermore, past morphological descriptions of U. intestinalis and U. compressa have apparently been too restrictive and have been responsible for numerous misidentifications. The same is true for U. linza, which, in northern Germany, clusters into two genetically closely related but morphologically indistinguishable entities. One of these entities is present on Helgoland, while the second is present on North Sea and Baltic Sea mainland coasts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Invited talk] In: LLUR-Workshop, 05.03.2018, Flintbek, Germany .
    Publication Date: 2018-12-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...