GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2015-2019  (4)
Publikationsart
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2015-12-22
    Beschreibung: Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU
    In:  EPIC3AGU Fall meeting, San Francisco, USA, 2015-12-14-2015-12-18San Francisco, USA, AGU
    Publikationsdatum: 2015-12-15
    Beschreibung: Biomass burning is a major source atmospheric gases and aerosols, and an important part of the global carbon cycle and radiation budget. The factors controlling centennial and millennial variability in region/global biomass burning are not well understood because there are few well-dated proxy records. We are exploring ice core records of organic compounds resulting from incomplete combustion of lignin as tracers for biomass burning. In this study we investigate the distribution of vanillic acid (VA) in Arctic ice cores. VA is a major product of conifer combustion, but may also be produced from angiosperms. VA was measured in ice core samples using ion chromatography with electrospray MS/MS detection. Here we present measurements of vanillic acid in three Arctic ice cores from Siberia (Akademii Nauk; 0-3 kyr bp), northern Greenland (Tunu; 0-1.75 kyr bp), and Svalbard (Lomonosovfonna; 0-0.75 kyr bp). The Siberian record exhibits 3 strong centennial scale maxima (1200-600 BC, AD 300-800, and AD 1450-1700). All three cores exhibit a smaller feature around 1250, with a subsequent decline in Greenland and Svalbard. VA levels in Greenland and Svalbard are generally smaller than those in Siberia. These results suggest strong input from Asian sources to the Siberian core, and lower Arctic-wide “background” levels at the other sites.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    European Geosciences Union (EGU) | Copernicus
    In:  EPIC3The Cryosphere Discuss., European Geosciences Union (EGU) | Copernicus, 9(4), pp. 4407-4436, ISSN: 1994-0416
    Publikationsdatum: 2022-08-12
    Beschreibung: The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere-ocean heat and gas exchange. Here we present a reconstruction of AD1950 to 1998 sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic). The halogens bromine (Br) and iodine (I) are strongly influenced by sea ice processes. Bromine reacts with the sea ice surface in auto-catalyzing “Bromine explosion” events causing an enrichment of the Br / Na ratio and the bromine excess (Brexc) in snow compared to that in seawater. Iodine is emitted from algal communities growing under sea ice. The results suggest a connection between Brexc and spring sea ice area, as well as a connection between iodine concentration and summer sea ice area. These two halogens are therefore good candidates for extended reconstructions of past sea ice changes in the Arctic.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past Discussion, COPERNICUS GESELLSCHAFT MBH, ISSN: 1814-9324
    Publikationsdatum: 2022-08-12
    Beschreibung: Wildfires and their emissions have significant impacts on ecosystems, climate, atmospheric chemistry and carbon cycling. Well-dated proxy records are needed to study the long-term climatic controls on biomass burning and the associated climate feedbacks. There is a particular lack of information about long-term biomass burning variations in Siberia, the largest forested area in the Northern Hemisphere. In this study we report analyses of aromatic acids (vanillic and para-hydroxybenzoic acids) over the past 3145 years in the Eurasian Arctic Akademii Nauk ice core. These compounds are aerosol-borne, semi-volatile organic compounds derived from lignin combustion. The analyses were made using ion chromatography with electrospray mass spectrometric detection. The levels of these aromatic acids ranged from below the detection limit (.01 to .05 ppb) to about 1 ppb, with roughly 30 % of the samples above the detection limit. In the preindustrial late Holocene, highly elevated aromatic acid levels are observed during four distinct periods (1180–660 BCE, 180–220 CE, 380–660 CE, and 1460–1660 CE). The timing of these periods coincides with the episodic pulsing of ice-rafted debris in the North Atlantic known as Bond events. Aromatic acid levels also are elevated during the onset of the industrial period from 1780 to 1860 CE, but with a different ratio of vanillic and para-hydroxybenzoic acid than is observed during the preindustrial period. This study provides the first millennial scale record of aromatic acids. It clearly demonstrates that coherent aromatic acid signals are recorded in polar ice cores that can be used as proxies for past trends in biomass burning.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...