GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (8)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2019-06-28
    Description: Highlights: • We compare the simulated Arctic Ocean in 15 global ocean–sea ice models. • There is a large spread in temperature bias in the Arctic Ocean between the models. • Warm bias models have a strong temperature anomaly of inflow of Atlantic Water. • Dense outflows formed on Arctic shelves are not captured accurately in the models. In this paper we compare the simulated Arctic Ocean in 15 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II). Most of these models are the ocean and sea-ice components of the coupled climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. We mainly focus on the hydrography of the Arctic interior, the state of Atlantic Water layer and heat and volume transports at the gateways of the Davis Strait, the Bering Strait, the Fram Strait and the Barents Sea Opening. We found that there is a large spread in temperature in the Arctic Ocean between the models, and generally large differences compared to the observed temperature at intermediate depths. Warm bias models have a strong temperature anomaly of inflow of the Atlantic Water entering the Arctic Ocean through the Fram Strait. Another process that is not represented accurately in the CORE-II models is the formation of cold and dense water, originating on the eastern shelves. In the cold bias models, excessive cold water forms in the Barents Sea and spreads into the Arctic Ocean through the St. Anna Through. There is a large spread in the simulated mean heat and volume transports through the Fram Strait and the Barents Sea Opening. The models agree more on the decadal variability, to a large degree dictated by the common atmospheric forcing. We conclude that the CORE-II model study helps us to understand the crucial biases in the Arctic Ocean. The current coarse resolution state-of-the-art ocean models need to be improved in accurate representation of the Atlantic Water inflow into the Arctic and density currents coming from the shelves.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-04
    Description: Since 2016, the Copernicus Marine Environment Monitoring Service (CMEMS) has produced and disseminated an ensemble of four global ocean reanalyses produced at eddy-permitting resolution for the period from 1993 to present, called GREP (Global ocean Reanalysis Ensemble Product). This dataset offers the possibility to investigate the potential benefits of a multi-system approach for ocean reanalyses, since the four reanalyses span by construction the same spatial and temporal scales. In particular, our investigations focus on the added value of the information on the ensemble spread, implicitly contained in the GREP ensemble, for temperature, salinity, and steric sea level studies. It is shown that in spite of the small ensemble size, the spread is capable of estimating the flow-dependent uncertainty in the ensemble mean, although proper re-scaling is needed to achieve reliability. The GREP members also exhibit larger consistency (smaller spread) than their predecessors, suggesting advancement with time of the reanalysis vintage. The uncertainty information is crucial for monitoring the climate of the ocean, even at regional level, as GREP shows consistency with CMEMS high-resolution regional products and complement the regional estimates with uncertainty estimates. Further applications of the spread include the monitoring of the impact of changes in ocean observing networks; the use of multi-model ensemble anomalies in hybrid ensemble-variational retrospective analysis systems, which outperform static covariances and represent a promising application of GREP. Overall, the spread information of the GREP product is found to significantly contribute to the crucial requirement of uncertainty estimates for climatic datasets.
    Description: Data from the reanalyses presented in this work are available from the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/). Part of this work was supported by the EOS COST Action (“Evaluation of Ocean Synthesis”, http://eos-cost.eu/) through its Short Term Scientific Missions program. The full C-GLORS dataset is available at http://c-glors.cmcc.it. This work has received funding from the Copernicus Marine Environment Monitoring Service (CMEMS).
    Description: Published
    Description: 287-312
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-22
    Description: Euro‐Mediterranean Centre on Climate Change coupled climate model (CMCC‐CM2) represents the new family of the global coupled climate models developed and used at CMCC. It is based on the atmospheric, land and sea ice components from the Community Earth System Model coupled with the global ocean model Nucleus for European Modeling of the Ocean. This study documents the model components, the coupling strategy, particularly for the oceanic, atmospheric, and sea ice components, and the overall model ability in reproducing the observed mean climate and main patterns of interannual variability. As a first step toward a more comprehensive, process‐oriented, validation of the model, this work analyzes a 200‐year simulation performed under constant forcing corresponding to present‐day climate conditions. In terms of mean climate, the model is able to realistically reproduce the main patterns of temperature, precipitation, and winds. Specifically, we report improvements in the representation of the sea surface temperature with respect to the previous version of the model. In terms of mean atmospheric circulation features, we notice a realistic simulation of upper tropospheric winds and midtroposphere geopotential eddies. The oceanic heat transport and the Atlantic meridional overturning circulation satisfactorily compare with present‐day observations and estimates from global ocean reanalyses. The sea ice patterns and associated seasonal variations are realistically reproduced in both hemispheres, with a better skill in winter. Main weaknesses of the simulated climate are related with the precipitation patterns, specifically in the tropical regions with large dry biases over the Amazon basin. Similarly, the seasonal precipitation associated with the monsoons, mostly over Asia, is weaker than observed. The main patterns of interannual variability in terms of dominant empirical orthogonal functions are faithfully reproduced, mostly in the Northern Hemisphere winter. In the tropics the main teleconnection patterns associated with El Niño–Southern Oscillation and with the Indian Ocean Dipole are also in good agreement with observations.
    Description: Published
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-15
    Description: Arctic sea-ice area and volume have substantially decreased since the beginning of the satellite era. Concurrently, the pole-ward heat transport from the North Atlantic Ocean into the Arctic has increased, partly contributing to the loss of sea ice. Increasing the horizontal resolution of general circulation models (GCMs) improves their ability to represent the complex interplay of processes at high latitudes. Here, we investigate the impact of model resolution on Arctic sea ice and Atlantic Ocean heat transport (OHT) by using five different state-of-the-art coupled GCMs (12 model configurations in total) that include dynamic representations of the ocean, atmosphere and sea ice. The models participate in the High Resolution Model Intercomparison Project (HighResMIP) of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Model results over the period 1950–2014 are compared to different observational datasets. In the models studied, a finer ocean resolution drives lower Arctic sea-ice area and volume and generally enhances Atlantic OHT. The representation of ocean surface characteristics, such as sea-surface temperature (SST) and velocity, is greatly improved by using a finer ocean reso-lution. This study highlights a clear anticorrelation at interannual time scales between Arctic sea ice (area and volume) and Atlantic OHT north of 60 ◦N in the models studied. However, the strength of this relationship is not systematically impacted by model resolution. The higher the latitude to compute OHT, the stronger the relationship between sea-ice area/volume and OHT. Sea ice in the Barents/Kara and Greenland–Iceland–Norwegian (GIN) Seas is more strongly connected to Atlantic OHT than other Arctic seas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-24
    Description: In a warming climate, satellite data indicate that the sea ice extent around Antarctica has increased over the last decades. One of the suggested explanations is the stabilizing effect of increased mass loss of the Antarctic ice sheet. Here, we investigate the sea ice response to changes in both the amount and the spatial distribution of freshwater input to the ocean by comparing a set of numerical sensitivity simulations with additional supply of water at the Antarctic ocean surface. We analyze the short-term response of the sea ice cover and the on-shelf water column to variations in the amount and distribution of the prescribed surface freshwater flux. Our results confirm that enhancing the freshwater input can increase the sea ice extent. Our experiments show a negative development of the sea ice extent only for extreme freshwater additions. We find that the spatial distribution of freshwater is of great influence on sea ice concentration and thickness as it affects sea ice dynamics and thermodynamics. For strong regional contrasts in the freshwater addition the dynamic response dominates the local change in sea ice, which generally opposes the thermodynamic response. Furthermore, we find that additional coastal runoff generally leads to fresher and warmer dense shelf waters.
    Description: Published
    Description: 1387–1402
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-24
    Description: The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This “eddy-permitting” resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.
    Description: Published
    Description: 1313–1333
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-15
    Description: In this paper we compare the simulated Arctic Ocean in 15 global ocean–sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II). Most of these models are the ocean and sea-ice components of the coupled climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. We mainly focus on the hydrography of the Arctic interior, the state of Atlantic Water layer and heat and volume transports at the gateways of the Davis Strait, the Bering Strait, the Fram Strait and the Barents Sea Opening. We found that there is a large spread in temperature in the Arctic Ocean between the models, and generally large differences compared to the observed temperature at intermediate depths. Warm bias models have a strong temperature anomaly of inflow of the Atlantic Water entering the Arctic Ocean through the Fram Strait. Another process that is not represented accurately in the CORE-II models is the formation of cold and dense water, originating on the eastern shelves. In the cold bias models, excessive cold water forms in the Barents Sea and spreads into the Arctic Ocean through the St. Anna Through. There is a large spread in the simulated mean heat and volume transports through the Fram Strait and the Barents Sea Opening. The models agree more on the decadal variability, to a large degree dictated by the common atmospheric forcing. We conclude that the CORE-II model study helps us to understand the crucial biases in the Arctic Ocean. The current coarse resolution state-of-the-art ocean models need to be improved in accurate representation of the Atlantic Water inflow into the Arctic and density currents coming from the shelves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...