GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (691)
Document type
Keywords
Language
Years
Year
  • 1
    Keywords: Report ; Dissertation ; Hochschulschrift ; Phytobenthos ; Mikroalgen
    Type of Medium: Online Resource
    Pages: Online-Ressource (191 Seiten, 44 MB) , Diagramme, Karte
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 308
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (112 Seiten, 3,17 MB) , Illustrationen, Diagramme
    Language: German , English
    Note: Förderkennzeichen BMBF 01LC1206A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-26
    Description: Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-26
    Description: Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta-analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log-response ratio = –0.091, 95% bootstrapped CI: –0.13, –0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (–11.8%) and marine (–10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model-averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species’ relative abundances were contingent on local species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-19
    Description: About 60 years ago, the critical depth hypothesis was proposed to describe the occurrence of spring phytoplankton blooms and emphasized the role of stratification for the timing of onset. Since then, several alternative hypotheses appeared focusing on the role of grazing and mixing processes such as turbulent convection or wind activity. Surprisingly, the role of community composition—and thus the distribution of phytoplankton traits—for bloom formation has not been addressed. Here, we discuss how trait variability between competing species might influence phytoplankton growth during the onset of the spring bloom. We hypothesize that the bloom will only occur if there are species with a combination of traits fitting to the environmental conditions at the respective location and time. The basic traits for formation of the typical spring bloom are high growth rates and photoadaptation to low light conditions, but other traits such as nutrient kinetics and grazing resistance might also be important. We present concise ideas on how to test our theoretical considerations experimentally. Furthermore, we suggest that future models of phytoplankton blooms should include both water column dynamics and variability of phytoplankton traits to make realistic projections instead of treating the phytoplankton bloom as an aggregate community phenomenon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    UNIV CHICAGO PRESS
    In:  EPIC3American Naturalist, UNIV CHICAGO PRESS, 193(1), pp. 35-50, ISSN: 0003-0147
    Publication Date: 2020-10-07
    Description: Metaecosystem theory addresses the link between local (within habitats) and regional (between habitats) dynamics by simultaneously analyzing spatial community ecology and abiotic matter flow. Here we experimentally address how spatial resource gradients and connectivity affect resource use efficiency (RUE) and stoichiometry in marine phytoplankton as well as the community composition at local and regional scales. We created gradostat metaecosystems consisting of five linearly interconnected patches, which were arranged either in countercurrent gradients of nitrogen (N) and phosphorus (P) supply or with a uniform spatial distribution of nutrients and which had either low or high connectivity. Gradient metaecosystems were characterized by higher remaining N and P concentrations (and N∶P ratios) than uniform ones, a difference reduced by higher connectivity. The position of the patch in the gradient strongly constrained elemental stoichiometry, local biovolume production, and RUE. As expected, algal carbon (C)∶N, biovolume, and N-specific RUE decreased toward the N-rich end of the gradient metaecosystem, whereas the opposite was observed for most of the gradient for C∶P, N∶P, and P-specific RUE. However, at highest N∶P supply, unexpectedly low C∶P, N∶P, and P-specific RUE values were found, indicating that the low availability of P inhibited efficient use of N and biovolume production. Consequently, gradient metaecosystems had lower overall biovolume at the regional scale. Whereas treatment effects on local richness were weak, gradients were characterized by higher dissimilarity in species composition. Thus, the stoichiometry of resource supply and spatial connectivity between patches appeared as decisive elements constraining phytoplankton composition and functioning in metaecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Global Change Biology, WILEY-BLACKWELL PUBLISHING, 24(10), pp. 4532-4543, ISSN: 1354-1013
    Publication Date: 2018-11-09
    Description: While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide‐ranging trend of nutrient decrease (re‐oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    2019 Springer Nature Publishing AG
    In:  EPIC3Communications Biology, 2019 Springer Nature Publishing AG, 2(40), ISSN: 2399-3642
    Publication Date: 2019-03-05
    Description: Food-chain length (FCL) is a fundamental ecosystem attribute, integrating information on both food web composition and ecosystem processes. It remains untested whether FCL also reflects the history of community assembly known to affect community composition and ecosystem functioning. Here, we performed microcosm experiments with a copepod (top predator), two ciliate species (intermediate consumers), and bacteria (producers), and modified the sequence of species introduction into the microcosm at four productivity levels to jointly test the effects of historical contingency and productivity on FCL. FCL increased when the top predator was introduced last; thus, the trophic position of the copepod reflected assembly history. A shorter FCL occurred at the highest productivity level, probably because the predator switched to feeding at the lower trophic levels because of the abundant basal resource. Thus, we present empirical evidence that FCL was determined by historical contingency, likely caused by priority effects, and by productivity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Ecological Society of America
    In:  EPIC3Ecology, Ecological Society of America, 100(11), ISSN: 1939-9170
    Publication Date: 2020-03-12
    Description: Nutrient availability and temperature are important drivers of phytoplankton growth and stoichiometry. However, the interactive effects of nutrients and temperature on phytoplankton have been analyzed mostly by addressing changes in average temperature, whereas recent evidence suggests an important role of temperature fluctuations. In a laboratory experiment, we grew a natural phytoplankton community under fluctuating and constant temperature regimes across 25 combinations of nitrogen (N) and phosphorus (P) supply. Temperature fluctuations decreased phytoplankton growth rate (rmax), as predicted by nonlinear averaging along the temperature–growth relationship. rmax increased with increasing P supply, and a significant temperature × P × N interaction reflected that the shape of the thermal reaction norm depended on nutrients. By contrast, phytoplankton carrying capacity increased with N supply and in fluctuating rather than constant temperature. Higher phytoplankton N:P ratios under constant temperature showed that temperature regimes affected cellular nutrient incorporation. Minor differences in species diversity and composition existed. Our results suggest that temperature variability interacts with nutrient supply to affect phytoplankton physiology and stoichiometry at the community level.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    UNIV CHICAGO PRESS
    In:  EPIC3American Naturalist, UNIV CHICAGO PRESS, 194(6), pp. 794-806, ISSN: 0003-0147
    Publication Date: 2020-03-13
    Description: Identifying stable coexistence in empirical systems is notoriously difficult. Here, we show how spatiotemporal structure and complex system dynamics can confound two commonly used stability metrics in empirical contexts: response to perturbation and invasion rate when rare. We use these metrics to characterize stable coexistence across a range of spatial and temporal scales for five simulated models in which the ability of species to coexist in the long term is known a priori and for an empirical old field successional time series. We term the resulting multivariate distribution of metrics a “stability fingerprint.” In accordance with a wide range of classic and recent studies, our results demonstrate that no combination of empirically tractable metrics or measurements is guaranteed to “correctly” characterize coexistence. However, we also find that heuristic information from the stability fingerprint can be used to broadly characterize dynamic behavior and identify circumstances under which particular combinations of species are likely to persist. Moreover, stability fingerprints appear to be particularly well suited for matching potential theoretical models to observed dynamics. These findings suggest that it may be prudent to shift the focus of empirical stability analysis away from quantifying single measures of stability and toward more heuristic, multivariate characterizations of community dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...