GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2015-2019  (5)
Publikationsart
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2018-08-13
    Beschreibung: We extended the 224Ra/228Th disequilibrium approach to examine benthic fluxes of a variety of metals, ranging from alkaline earth (Ba) to redox sensitive elements (U, Mn, and Fe), into the Pearl River Estuary (PRE), China. Depth profiles of 224Ra and 228Th in bulk sediment, as well as dissolved 224Ra and trace metals in porewater were measured along a transect within the estuary in July 2015. Significant deficit of 224Ra relative to 228Th was commonly observed in the upper 0–15 cm sediment. We took advantage of the 224Ra/228Th disequilibrium in the bottom sediments to construct a full mass balance of 224Ra in the overlying water column. We demonstrated that porewater exchange (PEX) processes with scale lengths of several centimeters are the predominant mechanism for solute transport between sediments and overlying waters in the PRE. In contrast, deep porewater flow or submarine groundwater discharge (SGD) with scale lengths of “meters to kilometers” are a negligible component in the water column budget of 224Ra. Strong correlations between dissolved 224Ra and trace metals (Ba, U, Mn, and Fe) in porewater were frequently observed in the study region. This likely reflects a fact that geochemical cycling of alkaline earth elements (e.g., Ra and Ba) and redox sensitive elements (like U) in sediments was closely linked to diagenetic reactions of manganese and iron oxides. This linkage makes it possible to quantify benthic fluxes of alkaline earth and redox sensitive metals using 224Ra/228Th disequilibrium in sediments. Benthic Ba fluxes based on 224Ra/228Th disequilibrium were found to vary from virtually nil to 320 μmol m−2 d−1 within the PRE. The highest flux was identified at salinity = 3.0–7.8 and could lead to an elevation of 54 nmol Ba l−1 in the water column, which well reproduced the Ba excess frequently observed in the low salinity domain of the estuary. Benthic fluxes of redox sensitive U ranged from −0.42 (“−” denotes flux into sediment) to 1.3 μmol m−2 d−1. This could only cause a change of −0.1 to 0.3 nmol U l−1 in the water column, which is very small when compared to the U concentration of 13–14 nmol l−1 in the northern South China Sea. We therefore predicted that water column U in the PRE must behave conservatively during mixing. This prediction is consistent with historical measurements of water column U concentration within the PRE. Large benthic fluxes of Mn and Fe were generally acquired with the 224Ra/228Th disequilibrium method. They varied from virtually nil up to 97 mmol m−2 d−1, and from zero to 27 mmol m−2 d−1, respectively. These estimates are 1–2 orders of magnitude higher than historical measurements based on the traditional incubation method in other coastal settings. Nonetheless, they are in agreement with a simple consideration of Mn and Fe mass balances in the sediment. An important implication of this study is that the role of coastal sediments in estuarine geochemistry of trace metals may need to be re-evaluated.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Earth and Planetary Science Letters, 434 . pp. 1-9.
    Publikationsdatum: 2020-01-07
    Beschreibung: Highlights • We present a Ba isotope data set of seawater, river waters and biogenic particles. • Ba isotope signatures of upper ocean waters are heavier than river and deep waters. • Adsorption of lighter Ba isotopes on biogenic particles induces the fractionation. • Ba isotopes trace land–sea interactions and ocean mixing processes. • Decoupling of Ba from major nutrients confirms Ba to be a biointermediate element. Abstract The distribution of barium (Ba) concentrations in seawater resembles that of nutrients and Ba has been widely used as a proxy of paleoproductivity. However, the exact mechanisms controlling the nutrient-like behavior, and thus the fundamentals of Ba chemistry in the ocean, have not been fully resolved. Here we present a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa) profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River). We find pronounced and systematic horizontal and depth dependent δ137BaDBa gradients. Beyond the river influence characterized by generally light signatures (0.0 to +0.3‰+0.3‰), the δ137BaDBa values in the upper water column are significantly higher (+0.9‰+0.9‰) than those in the deep waters (+0.5‰+0.5‰). Moreover, δ137BaDBa signatures are essentially constant in the entire upper 100 m, in which dissolved silicon isotopes are fractionated during diatom growth resulting in the heaviest isotopic compositions in the very surface waters. Combined with the decoupling of DBa concentrations and δ137BaDBa from the concentrations of nitrate and phosphate this implies that the apparent nutrient-like fractionation of Ba isotopes in seawater is primarily induced by preferential adsorption of the lighter isotopes onto biogenic particles rather than by biological utilization. The subsurface δ137BaDBa distribution is dominated by water mass mixing. The application of stable Ba isotopes as a proxy for nutrient cycling should therefore be considered with caution and both biological and physical processes need to be considered. Clearly, however, Ba isotopes show great potential as a new tracer for land–sea interactions and ocean mixing processes.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 60 (5). pp. 1619-1633.
    Publikationsdatum: 2018-06-20
    Beschreibung: We present the first set of dissolved silicon isotope data in seawater (delta Si-30(Si(OH)4)) from the East China Sea, a large and productive marginal sea significantly influenced by the Kuroshio Current and freshwater inputs from the Changjiang (Yangtze River). In summer (August 2009), the lowest surface delta Si-30(Si(OH)4) signatures of +2.1 parts per thousand corresponding to the highest Si(OH)(4) concentrations (similar to 30.0 mu mol L-1) were observed nearshore in Changjiang Diluted Water. During advection on the East China Sea inner shelf, surface delta Si-30(Si(OH)4) increased rapidly to +3.2 parts per thousand while Si(OH)(4) became depleted, indicating increasing biological utilization of the Si(OH)(4) originating from the Changjiang Diluted Water. This is also reflected in the water column profiles characterized by a general decrease of delta Si-30(Si(OH)4) and an increase of Si(OH)(4) with depth on the East China Sea mid-shelf and slope. In winter (December 2009-January 2010), however, the delta Si-30(Si(OH)4) was nearly constant at +1.9 parts per thousand throughout the water column on the East China Sea shelf beyond the nearshore, which was a consequence of enhanced vertical mixing of the Kuroshio subsurface water. Horizontal admixture of Kuroshio surface water, which is highly fractionated in Si isotopes, was observed only beyond the shelf break. Significant seasonal differences in delta Si-30(Si(OH)4) were detected in the surface waters beyond the Changjiang Diluted Water-influenced region on the East China Sea shelf, where the winter values were similar to 1.0 parts per thousand lower than those in summer, despite the same primary Si(OH)(4) supply from the Kuroshio subsurface water during both seasons. This demonstrates significantly higher biological consumption and utilization of Si(OH)(4) in summer than in winter.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  [Talk] In: Goldschmidt Conference 2017, 13.-18.08.2017, Paris, France .
    Publikationsdatum: 2018-05-16
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-01-31
    Beschreibung: The first inter-calibration study of the stable silicon isotope composition of dissolved silicic acid in seawater, δ30Si(OH)4, is presented as a contribution to the international GEOTRACES program. Eleven laboratories from seven countries analyzed two seawater samples from the north Pacific subtropical gyre (Station ALOHA) collected at 300 m and at 1000 m water depth. Sampling depths were chosen to obtain samples with a relatively low (9 μmol L-1, 300 m) and a relatively high (113 μmol L-1, 1000 m) silicic acid concentration as sample preparation differs for low- and high- concentration samples. Data for the 1000m water sample were not normally distributed so the median is used to represent the central tendency for the two samples. Median δ30Si(OH)4 values of +1.66 ‰ for the low-concentration sample and +1.25 ‰ for the high-concentration sample were obtained. Agreement among laboratories is overall considered very good; however, small but statistically significant differences among the mean isotope values obtained by different laboratories were detected likely reflecting interlaboratory differences in chemical preparation including pre-concentration and purification methods together with different volumes of seawater volume analyzed, and the use of different mass spectrometers including the Neptune MC-ICP-MS (Thermo Fisher™, Germany), the Nu Plasma MC-ICP-MS (Nu Instruments™, Wrexham, UK), and the Finnigan™ (now Thermo Fisher™, Germany) MAT 252 IRMS. Future studies analyzing δ30Si(OH)4 in seawater should also analyze and report values for these same two reference waters in order to facilitate comparison of data generated among and within laboratories over time.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...