GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1)
Document type
Publisher
Language
Years
Year
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Pollution prevention. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (380 pages)
    Edition: 1st ed.
    ISBN: 9780128180969
    DDC: 363.737
    Language: English
    Note: Front Cover -- ABATEMENT OF ENVIRONMENTAL POLLUTANTS -- ABATEMENT OF ENVIRONMENTAL POLLUTANTS -- Copyright -- Contents -- Contributors -- 1 - Bioremediation: a sustainable approach for management of environmental contaminants -- 1. Introduction -- 2. Application of bioremediation for environmental pollutants cleanup -- 2.1 Bioremediation strategy for hydrocarbon contaminated water and soil -- 2.2 Bioremediation of heavy metal contaminated water -- 2.3 Bioremediation of dye contaminated water -- 2.3.1 Bioremediation approaches used for dye degradation -- 2.3.1.1 Aerobic treatment -- 2.3.1.2 Anaerobic treatment -- 2.3.1.3 Anoxic treatment -- 2.3.1.4 Sequential degradation of dyes -- 2.4 Vermi-biofiltration of wastewater -- 2.5 Bioremediation of pesticide contamination -- 2.6 Removal of pharmaceutical and personal care products by biological degradation processes -- 2.6.1 Pure cultures -- 2.6.2 Mixed cultures -- 2.6.3 Activated sludge process -- 2.7 Vermicomposting of solid wastes -- 2.8 Genetically engineered microorganism-based bioremediation -- 2.9 Factors affecting bioremediation with emphasis on petrochemical and other organic pollutants -- 2.10 Concentration of pollutant -- 2.11 Nutrients availability -- 2.12 Microbial adaptation (acclimatization) -- 2.13 Bioavailability -- 2.14 Effect of environmental conditions -- 2.14.1 Temperature -- 2.14.2 pH -- 2.14.3 Oxygen availability -- 3. Conclusion -- References -- 2 - Pollution status and biodegradation of organophosphate pesticides in the environment -- 1. Introduction -- 2. Organophosphates and other pesticides -- 3. Effect of pesticides -- 3.1 Effects on human health -- 3.1.1 Acute effect -- 3.1.2 Chronic effect -- 3.2 Environmental impact -- 3.3 Impact on nontarget organisms -- 3.4 Effects on the microbial diversity of soil -- 3.5 Pesticide resistance. , 4. Toxicological mechanism of organophosphates -- 5. Status of organophosphate pesticide pollution -- 6. Degradation of organophosphate pesticides -- 7. Conclusion -- References -- 3 - Recent trends in the detection and degradation of organic pollutants -- 1. Introduction -- 2. Persistent organic pollutants: health effects and environmental chemistry -- 3. Method of POPs analysis (soil and water) -- 3.1 Samples collection, extraction, storage, and preparation -- 3.2 Conventional techniques -- 3.3 Analytical techniques for POPs quantification -- 3.3.1 UV-Vis spectroscopy -- 3.3.2 Surface-enhanced Raman scattering -- 4. Methods for POPs degradation -- 4.1 Biological -- 4.1.1 Microbial degradation -- 4.1.1.1 Bacterial degradation -- 4.1.1.2 Fungal degradation -- 4.2 Chemical -- 4.3 Advanced oxidation approaches -- 5. Conclusions -- Acknowledgments -- References -- 4 - Phytoremediation of organic pollutants: current status and future directions -- 1. Introduction -- 2. The process of phytoremediation -- 3. Physiological and biochemical aspects of phytoremediation -- 4. Strategies of phytoremediation of organic pollutants -- 4.1 Direct uptake (direct phytoremediation) -- 4.2 Phytoremediation explanta -- 5. Role of enzymes -- 6. Role of plant-associated microflora -- 7. Fate and transport of organic contaminants in phytoremediation -- 8. Genetically engineered organisms for phytoremediation -- 9. Research and development in phytoremediation -- 9.1 Current status -- 9.2 Biotechnological approaches -- 9.3 Protein engineering -- 10. Advantages and limitations of phytoremediation -- 11. Emerging challenges to phytoremediation -- 12. Conclusion -- Acknowledgments -- References -- Further reading -- 5 - Bioremediation of dyes from textile and dye manufacturing industry effluent -- 1. Introduction -- 2. Importance of characterization of dye-containing wastewater. , 3. Factors affecting biological removal of textile dyes -- 4. Microorganisms and mechanism involved in dye bioremediation process -- 4.1 Bacteria -- 4.2 Fungi -- 4.3 Algae -- 5. Application of enzymes as biocatalyst in dye bioremediation -- 5.1 Immobilization of biological catalysts -- 5.2 Potential of biocatalysts for reusability -- 6. Advancements in bioreactor systems for dye remediation -- 7. Treatment of dye-containing industrial effluents using genetically modified microorganisms or enzymes -- 8. Current status of bioreactor application in CETPs of industrial areas for dye removal -- 9. Microbial fuel cell: a novel system for the remediation of colored wastewater -- 9.1 Microorganisms used in microbial fuel cells -- 9.2 Microbial fuel cell configuration and operation -- 10. Potential of constructed wetlands for the treatment of dye-contaminated effluents -- 11. Conclusion and suggestions -- References -- 6 - Mycoremediation of polycyclic aromatic hydrocarbons -- 1. Introduction -- 1.1 PAHs: environmental concern -- 1.2 Effect of PAHs exposure on environment and human health -- 1.3 Bioremediation approach -- 2. Mycoremediation: intact potential -- 2.1 Ligninolytic fungi -- 2.2 Nonligninolytic fungi -- 3. Major enzymes -- 3.1 Hydrolases -- 3.1.1 Proteases -- 3.1.2 Cellulases -- 3.1.3 Lipases -- 3.2 Versatile peroxidases -- 3.3 Ligninolytic enzymes -- 3.3.1 Laccase -- 3.3.2 Heme peroxidases -- 4. Biosurfactant production by fungi and its application in bioremediation -- 5. Factors affecting growth of fungi -- 5.1 Temperature -- 5.2 Humidity -- 5.3 pH -- 5.4 Light -- 5.5 Trace elements -- 5.6 Aeration -- 6. Conclusion and future perspective -- References -- Further reading -- 7 - Plant growth-promoting rhizobacteria and their functional role in salinity stress management -- 1. Introduction -- 2. Plant growth-promoting rhizobacteria. , 3. Plant growth-promoting rhizobacteria in salinity stress -- 3.1 Functional aspects of PGPR under salt stress -- 4. PGPR and ACC deaminase activity -- 5. Conclusion -- References -- Further reading -- 8 - Plant growth-promoting bacteria and their role in environmental management -- 1. Introduction -- 2. Plant growth-promoting bacteria -- 3. Xenobiotic compounds and their classification -- 4. Effect of xenobiotics on the health of human beings -- 5. Effects of xenobiotics on the plant growth -- 5.1 Plant growth-promoting bacteria in bioremediation -- 5.2 Plant growth-promoting bacteria mechanism of xenobiotics degradation -- 5.3 Microbial degradation of xenobiotic compounds -- 6. Future prospective -- Acknowledgments -- References -- Further reading -- 9 - Fungi as potential candidates for bioremediation -- 1. Introduction -- 1.1 Fungal enzymes for bioremediation -- 1.1.1 Extracellular oxidoreductases -- 1.2 Cell-bound enzymes -- 1.3 Transferases -- 2. Fungal bioremediation -- 2.1 Toxic recalcitrant compound -- 2.2 Heavy metal -- 2.3 Municipal solid waste -- 3. Fungi in bioremediation -- 3.1 White-rot fungi -- 3.2 Marine fungi -- 3.3 Extremophilic fungi -- 3.4 Symbiotic association of fungi with plants and bacteria -- 4. Technology advancement -- 4.1 Conclusions and future prospective -- References -- 10 - Cyanobacteria: potential and role for environmental remediation -- 1. Introduction -- 1.1 General features of cyanobacteria -- 1.2 Role of cyanobacteria in agriculture management -- 1.3 The cyanobacterial potential in environmental development -- 1.4 Cyanobacteria: role in bioremediation -- 2. Conclusions and future perspectives -- Acknowledgments -- References -- Further reading -- 11 - An effective approach for the degradation of phenolic waste: phenols and cresols -- 1. Introduction -- 1.1 Cresol production. , 1.2 Adverse effects of phenols and cresols on the environment and human health -- 2. Treatment technologies for phenolic compound removal -- 2.1 Physical method -- 2.2 Chemical method -- 2.3 Biological method -- 2.3.1 Bacteria -- 2.3.2 Biodegradation mechanism -- 2.3.3 Aerobic degradation of phenolic waste -- 2.3.4 Anaerobic degradation of phenolic waste -- 2.3.5 Fungi biodegradation -- 2.3.6 Enzymes participating in degradation of phenolic compounds -- 2.3.7 Biosurfactants -- 2.3.8 Genetically modified bacteria -- 3. Factors influencing bioremediation of phenolic waste -- 3.1 Temperature -- 3.2 Nutrient availability -- 3.3 Effect of pH on phenol degradation potential -- 3.4 Effect of additional carbon sources on phenol degradation potential -- 3.5 Effect of dissolved oxygen concentration on phenol degradation potential -- 3.6 Microbial growth kinetics -- 4. Limitations of biodegradation -- 5. Photocatalytic degradation -- 5.1 Photo catalyst and its description -- 5.2 Mechanism of TiO2 in photocatalytic degradation of phenolic compounds -- 6. Factors affecting photocatalytic degradation of TiO2 -- 6.1 Light intensity -- 6.2 Reaction temperature -- 6.3 Catalyst loading -- 6.4 pH of solution -- 6.5 Inorganic ions -- 6.6 Conclusion -- Acknowledgments -- References -- 12 - Environmental fate of organic pollutants and effect on human health -- 1. Introduction -- 1.1 Persistent organic pollutants -- 1.2 General characteristics of persistent organic pollutants -- 1.3 Sources of persistent organic pollutants -- 2. Types of persistent organic pollutants -- 2.1 Pesticides -- 2.1.1 Dichlorodiphenyltrichloroethane -- 2.1.2 Aldrin -- 2.1.3 Chlordane -- 2.1.4 Heptachlor -- 2.1.5 Endrin -- 2.1.6 Mirex -- 2.2 Industrial chemicals -- 2.2.1 Polychlorinated biphenyls -- 2.2.2 Hexachlorobenzene -- 2.2.3 Hexachlorobutadiene -- 2.2.4 Short-chain chlorinated paraffins. , 2.3 Industrial by-products.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...