GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-27
    Keywords: 151-911A; AGE; Calculated; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Ice rafted debris; Joides Resolution; Leg151; North Greenland Sea
    Type: Dataset
    Format: text/tab-separated-values, 406 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Journal of Glaciology, Cambridge University Press, 63(239), pp. 556-564, ISSN: 0022-1430
    Publication Date: 2017-07-27
    Description: Ice-stream dynamics are strongly controlled by processes taking place at the ice/bed interface where subglacial water both lubricates the base and saturates any existing, underlying sediment. Large parts of the former Eurasian ice sheet were underlain by thick sequences of soft, marine sediments and many areas are imprinted with geomorphological features indicative of fast flow and wet basal conditions. Here, we study the effect of subglacial water on past Eurasian ice-sheet dynamics by incorporating a thin-film model of basal water flow into the ice-sheet model SICOPOLIS and use it to better represent flow in temperate areas. The adjunction of subglacial hydrology results in a smaller ice-sheet building up over time and generally faster ice velocities, which consequently reduces the total area fraction of temperate basal ice and ice streaming areas. Minima in the hydraulic pressure potential, governing water flow, are used as indicators for potential locations of past subglacial lakes and a probability distribution of lake existence is presented based on estimated lake depth and longevity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3The Cryosphere, COPERNICUS GESELLSCHAFT MBH, 10(2), pp. 751-760, ISSN: 1994-0424
    Publication Date: 2016-04-11
    Description: As ice flows over a subglacial lake, the drop in bed resistance leads to an increase in ice velocities and a draw down of isochrones and cold ice. The ice surface flattens as it adjusts to the lack of resisting forces at the base. The rapid transition in velocity induces changes in ice viscosity and releases deformation energy that can raise the temperature locally. Recent studies of Antarctic subglacial lakes indicate that many lakes experience very fast and possibly episodic drainage, during which the lake size is rapidly reduced as water flows out. Questions that arise are what effect this would have on internal layers within the ice and whether such past drainage events could be inferred from isochrone structures downstream. Here, we study the effect of a subglacial lake on ice dynamics as well as the influence that such short timescale drainage would have on the internal layers of the ice. To this end, we use a full Stokes, polythermal ice flow model. An enthalpy-gradient method is used to account for the evolution of temperature and water content within the ice. We find that a rapid transition between slow-moving ice outside the lake, and full sliding over the lake, can release considerable amounts of deformational energy, with the potential to form a temperate layer at depth in the transition zone. In addition, we provide an explanation for a characteristic surface feature commonly seen at the edges of subglacial lakes, a hummocky surface depression in the transition zone between little to full sliding. We also conclude that rapid changes in the horizontal extent of subglacial lakes and slippery patches, compared to the average ice column velocity, can create a traveling wave at depth within the isochrone structure that transfers downstream with the advection of ice, thus indicating the possibility of detecting past drainage events with ice penetrating radar.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...