GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 3647-3660, doi:10.1175/JCLI-D-15-0626.1.
    Description: An assessment is made of the mean and variability of the net air–sea heat flux, Qnet, from four products (ECCO, OAFlux–CERES, ERA-Interim, and NCEP1) over the global ice-free ocean from January 2001 to December 2010. For the 10-yr “hiatus” period, all products agree on an overall net heat gain over the global ice-free ocean, but the magnitude varies from 1.7 to 9.5 W m−2. The differences among products are particularly large in the Southern Ocean, where they cannot even agree on whether the region gains or loses heat on the annual mean basis. Decadal trends of Qnet differ significantly between products. ECCO and OAFlux–CERES show almost no trend, whereas ERA-Interim suggests a downward trend and NCEP1 shows an upward trend. Therefore, numerical simulations utilizing different surface flux forcing products will likely produce diverged trends of the ocean heat content during this period. The downward trend in ERA-Interim started from 2006, driven by a peculiar pattern change in the tropical regions. ECCO, which used ERA-Interim as initial surface forcings and is constrained by ocean dynamics and ocean observations, corrected the pattern. Among the four products, ECCO and OAFlux–CERES show great similarities in the examined spatial and temporal patterns. Given that the two estimates were obtained using different approaches and based on largely independent observations, these similarities are encouraging and instructive. It is more likely that the global net air–sea heat flux does not change much during the so-called hiatus period.
    Description: This paper is funded in part by the NOAA Climate Observation Division, Climate Program Office, under Grant NA09OAR4320129 and by the NOAA MAPP Climate Reanalysis Task Force Team under Grant NA13OAR4310106. The study was initiated when X. Liang was a postdoc at MIT, where he was supported in part by the NSF through Grant OCE-0961713, by NOAA through Grant NA10OAR4310135, and by the NASA Physical Oceanography Program through ECCO.
    Description: 2016-11-15
    Keywords: Physical Meteorology and Climatology ; Heat budgets/fluxes ; Surface fluxes ; Models and modeling ; Reanalysis data ; Variability ; Climate variability ; Interannual variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yu, L., Jin, X., & Schulz, E. W. Surface heat budget in the Southern Ocean from 42 degrees S to the Antarctic marginal ice zone: Four atmospheric reanalyses versus icebreaker Aurora Australis measurements. Polar Research, 38, (2019): 3349, doi:10.33265/polar.v38.3349.
    Description: Surface heat fluxes from four atmospheric reanalyses in the Southern Ocean are evaluated using air–sea measurements obtained from the Aurora Australis during off-winter seasons in 2010–12. The icebreaker tracked between Hobart, Tasmania (ca. 42°S), and the Antarctic continent, providing in situ benchmarks for the surface energy budget change in the Subantarctic Southern Ocean (58–42°S) and the eastern Antarctic marginal ice zone (MIZ, 68–58°S). We find that the reanalyses show a high-level agreement among themselves, but this agreement reflects a universal bias, not a “truth.” Downward shortwave radiation (SW↓) is overestimated (warm biased) and downward longwave radiation (LW↓) is underestimated (cold biased), an indication that the cloud amount in all models is too low. The ocean surface in both regimes shows a heat gain from the atmosphere when averaged over the seven months (October–April). However, the ocean heat gain in reanalyses is overestimated by 10–36 W m−2 (80–220%) in the MIZ but underestimated by 6–20 W m−2 (7–25%) in the Subantarctic. The biases in SW↓ and LW↓ cancel out each other in the MIZ, causing the surface heat budget to be dictated by the underestimation bias in sensible heat loss. These reanalyses biases affect the surface energy budget in the Southern Ocean by meaningfully affecting the timing of the seasonal transition from net heat gain to net heat loss at the surface and the relative strength of SW↓ at different regimes in summer, when the length-of-day effect can lead to increased SW↓ at high latitudes.
    Description: The study is supported by the NOAA Climate Observation Division grant NA14OAR4320158 and NOAA Modeling, Analysis, Predictions, and Projections Program’s Climate Reanalysis Task Force through grant no. NA13OAR4310106.
    Keywords: Surface fluxes ; Surface energy budget ; Overestimation bias ; Underestimation bias ; Surface meteorology ; Icebreaker-based meteorological measurements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...