GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-05-18
    Beschreibung: Recent evidence from mooring data in the equatorial Atlantic reveals that semi-annual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of 10's of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealised model set-up that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (11). pp. 8122-8137.
    Publikationsdatum: 2021-03-19
    Beschreibung: Extensive field campaigns in the Mauritanian upwelling region between 2005 and 2016 provide the database for analyzing the seasonal variability of the eastern boundary circulation (EBC) and associated water mass distribution at 18°N. The data set includes shipboard upper ocean current, hydrographic, and oxygen measurements from nine research cruises conducted during upwelling (December to April) and relaxation (May to July) seasons. During the upwelling season, the EBC closely resembles a classical eastern boundary current regime, with a poleward undercurrent flowing beneath an equatorward coastal jet. In contrast, elevated poleward flow exceeding 30 cm/s and extending from the surface down to 250-m depth is observed during the relaxation season. The pronounced seasonal variability of the across-shore structure of the EBC can be related to local wind forcing and is in general agreement with Sverdrup balance. The EBC transport is correlated to the wind stress curl leading the transport by 7 days. The short lead time suggests a fast response of locally forced waves adjusting the EBC to wind forcing. The seasonal and vertical water mass distribution is presented based on hydrographic observations. The meridional oxygen distribution and corresponding water mass partitioning into South and North Atlantic Central Water masses reveal a possible northerly ventilation pathway in the deeper layers of the central water stratum. Our results suggest that the poleward surface flow and the poleward undercurrent both are a consequence of the cyclonic wind stress curl forcing and thus propose to name it the Mauritania Current.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-05-19
    Beschreibung: Gelatinous zooplankton hold key functions in the ocean and have been shown to significantly influence the transport of organic carbon to the deep sea. We discovered a gelatinous, flux‐feeding polychaete of the genus Poeobius in very high abundances in a mesoscale eddy in the tropical Atlantic Ocean, where it co‐occurred with extremely low particle concentrations. Subsequent analysis of an extensive in situ imaging dataset revealed that Poeobius sp. occurred sporadically between 5°S–20°N and 16°W–46°W in the upper 1000 m. Abundances were significantly elevated and the depth distribution compressed in anticyclonic modewater eddies (ACMEs). In two ACMEs, high Poeobius sp. abundances were associated with strongly reduced particle concentrations and fluxes in the layers directly below the polychaete. We discuss possible reasons for the elevated abundances of Poeobius sp. in ACMEs and provide estimations showing that a single zooplankton species can completely intercept the downward particle flux by feeding with their mucous nets, thereby substantially altering the biogeochemical setting within the eddy.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (12). pp. 9795-9813.
    Publikationsdatum: 2020-02-06
    Beschreibung: The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N–45°N and 130°E–180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (1). pp. 171-184.
    Publikationsdatum: 2020-02-06
    Beschreibung: The tropical Atlantic exerts a major influence in climate variability through strong air-sea interactions. Within this region, the eastern side of the equatorial band is characterized by strong seasonality, whereby the most prominent feature is the annual development of the Atlantic Cold Tongue (ACT). This band of low sea surface temperatures (∼22-23°C) is typically associated with upwelling-driven enhancement of surface nutrient concentrations and primary production. Based on a detailed investigation of the distribution and sea-to-air fluxes of N2O in the eastern equatorial Atlantic (EEA), we show that the onset and seasonal development of the ACT can be clearly observed in surface N2O concentrations, which increase progressively as the cooling in the equatorial region proceeds during spring-summer. We observed a strong influence of the surface currents of the EEA on the N2O distribution, which allowed identifying “high” and “low” concentration regimes that were, in turn, spatially delimited by the extent of the warm eastward-flowing North Equatorial Countercurrent and the cold westward-flowing South Equatorial Current. Estimated sea-to-air fluxes of N2O from the ACT (mean 5.18±2.59 µmol m−2 d−1) suggests that in May-July 2011 this cold-water band doubled the N2O efflux to the atmosphere with respect to the adjacent regions, highlighting its relevance for marine tropical emissions of N2O. This article is protected by copyright. All rights reserved.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 121 (7). pp. 4777-4789.
    Publikationsdatum: 2021-05-19
    Beschreibung: An extreme cold sea surface temperature event occurred in the Atlantic cold tongue region in boreal summer 2009. It was preceded by a strong negative Atlantic meridional mode event associated with north-westerly wind anomalies along the equator from March to May. Although classical equatorial wave dynamics suggest that westerly wind anomalies should be followed by a warming in the eastern equatorial Atlantic, an abrupt cooling took place. In the literature two mechanisms—meridional advection of subsurface temperature anomalies and planetary wave reflection—are discussed as potential causes of such an event. Here, for the first time we use in situ measurements in addition to satellite and reanalysis products to investigate the contribution of both mechanisms to the 2009 cold event. Our results suggest that meridional advection is less important in cold events than in corresponding warm events, and, in particular, did not cause the 2009 cold event. Argo float data confirm previous findings that planetary wave reflection contributed to the onset of the 2009 cold event. Additionally, our analysis suggests that higher baroclinic modes were involved.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (18). pp. 7615-7622.
    Publikationsdatum: 2019-02-25
    Beschreibung: The western boundary current system off Brazil is a key region for diagnosing variations of the Atlantic meridional overturning circulation (AMOC) and the southern subtropical cell. In July 2013 a mooring array was installed off the coast at 11°S similar to an array installed between 2000 and 2004 at the same location. Here we present results from two research cruises and the first 10.5 months of moored observations in comparison to the observations a decade ago. Average transports of the North Brazil Undercurrent and the Deep Western Boundary Current (DWBC) have not changed between the observational periods. DWBC eddies that are predicted to disappear with a weakening AMOC are still present. Upper layer changes in salinity and oxygen within the last decade are consistent with an increased Agulhas leakage, while at depths water mass changes are likely related to changes in the North Atlantic as well as tropical circulation changes.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 124 (4). pp. 2348-2373.
    Publikationsdatum: 2022-01-31
    Beschreibung: The North Equatorial Undercurrent (NEUC) has been suggested to act as an important oxygen supply route towards the oxygen minimum zone in the Eastern Tropical North Atlantic. Observational estimates of the mean NEUC strength are uncertain due to the presence of elevated mesoscale activities, and models have difficulties in simulating a realistic NEUC. Here we investigate the interannual variability of the NEUC and its impact onto oxygen based on the output of a high‐resolution ocean general circulation model (OGCM) and contrast the results with an unique data set of 21 ship sections along 23° W and a conceptual model. We find that the interannual variability of the NEUC in the OGCM is related to the Atlantic Meridional Mode (AMM) with a stronger and more northward NEUC during negative AMM phases. Discrepancies between OGCM and observations suggest a different role of the NEUC in setting the regional oxygen distribution. In the model a stronger NEUC is associated with a weaker oxygen supply towards the east. We attribute this to a too strong recirculation between the NEUC and the northern branch of the South Equatorial Current (nSEC) in the OGCM. Idealized experiments with the conceptual model support the idea that the impact of NEUC variability on oxygen depends on the source water pathway. A strengthening of the NEUC supplied out of the western boundary acts to increase oxygen levels within the NEUC. A strengthening of the recirculations between NEUC and the nSEC results in a reduction of oxygen levels within the NEUC.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-01-31
    Beschreibung: Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) is a multinational program initiated in 1997 in the tropical Atlantic to improve our understanding and ability to predict ocean-atmosphere variability. PIRATA consists of a network of moored buoys providing meteorological and oceanographic data transmitted in real time to address fundamental scientific questions as well as societal needs. The network is maintained through dedicated yearly cruises, which allow for extensive complementary shipboard measurements and provide platforms for deployment of other components of the Tropical Atlantic Observing System. This paper describes network enhancements, scientific accomplishments and successes obtained from the last 10 years of observations, and additional results enabled by cooperation with other national and international programs. Capacity building activities and the role of PIRATA in a future Tropical Atlantic Observing System that is presently being optimized are also described.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 124 (8). pp. 5923-5951.
    Publikationsdatum: 2022-01-31
    Beschreibung: A systematic study of Benguela Nino and Benguela Nina events during 1958 to 2015 including those that developed before the satellite era (1982) is carried out using an ocean general circulation model in combination with a linear equatorial model. Altogether, 21 strong warm and cold anomalous coastal events are identified among which 6 undocumented extreme coastal events are reported. Results suggest that most of these extreme coastal events including the newly identified ones are linked to remote equatorial forcing via mode 2 equatorial Kelvin waves. The latter propagates after approaching the African coast poleward as coastally trapped waves leading surface temperature anomalies along the Angola-Benguela current system by one month. One to two months before the peak of Benguela Ninos or Ninas usually occurring in March-April, a large-scale wind stress forcing is observed with both local (variations of alongshore coastal wind stress) and remote forcing developing simultaneously. Results further suggest that surface temperature anomalies off Southern Angola and in the Angola-Benguela Front are associated with equatorial dynamics and meridional wind stress fluctuations off the southwestern African coast north of 15 degrees S. Similar mechanisms are observed for Northern Namibia in combination with forcing by local meridional wind stress variations. Plain Language Summary The Benguela upwelling system located in the southeastern Atlantic Ocean supports a large marine ecosystem due to upwelling conditions. Every few years, anomalous warm and cold coastal events occur in the southeastern Atlantic and are detrimental for Angola, Namibia, and South Africa, as they affect fisheries and rainfall like El Nino phenomenon in the Pacific. To study these coastal events from 1958 to 2015, we use the output from a tropical Atlantic simulation in combination with the solution of a simple linear equatorial model. We study the anomalous coastal events including the ones that occurred before the satellite era (before 1982) and examine the role of the local wind forcing and the remote forcing associated with equatorial variability. We describe so far undocumented extreme events occurring from 1958 to 2015. Results suggest that most of the extreme coastal warm and cold events are associated with the propagation of equatorial Kelvin waves along the equatorial waveguide which trigger poleward-propagating coastal trapped waves along the southwestern African coast. One to two months before the peak season (usually March-April) of the anomalous coastal events, a large-scale wind pattern is observed, encompassing both variations of alongshore coastal wind in the southeastern Atlantic and zonal wind along the equatorial Atlantic.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...