GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Spermatogenesis. ; Electronic books.
    Description / Table of Contents: Spermatogenesis involves the coordination of a number of signaling pathways, which culminate into production of sperm. Its failure results in male factor infertility, which can be due to hormonal, environmental, genetic or other unknown factors. This book inludes chapters on most of the signaling pathways known to contribute to spermatogenesis.
    Type of Medium: Online Resource
    Pages: 1 online resource (199 pages)
    Edition: 1st ed.
    ISBN: 9780429520952
    DDC: 612.61
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Foreword -- Preface -- Editor -- Contributors -- 1. Primordial germ cells: Origin, migration and testicular development -- 1.1 Introduction -- 1.2 Origin of primordial germ cells -- 1.2.1 Molecular mechanisms during the origin of PGCs -- 1.3 Migration of PGCs -- 1.3.1 Molecular mechanisms during PGC migration -- 1.3.2 Migration stoppage of PGCs -- 1.4 Gonad and testicular development -- 1.4.1 Sertoli cell specification and expansion -- 1.4.2 Testis cord formation and compartmentalization -- 1.4.3 Formation of seminiferous tubules from testis cord by elongation -- 1.5 Conclusion and future directions -- Acknowledgments -- References -- 2. DNA methylation, imprinting and gene regulation in germ cells -- 2.1 Introduction -- 2.2 Dynamics of DNA methylation during PGC development -- 2.3 Mechanism and factors of DNA methylation erasure -- 2.4 Mechanism and factors of DNA methylation establishment -- 2.5 DNA methylation and histone modifications -- 2.6 Conclusion and future directions -- Acknowledgments -- References -- 3. Testicular stem cells, spermatogenesis and infertility -- 3.1 Introduction -- 3.2 Development of male germline cells -- 3.3 Testicular stem cells -- 3.3.1 As model for spermatogonial multiplication and stem cell renewal -- 3.3.2 Fragmentation model -- 3.3.3 Hierarchical model -- 3.4 Our views -- 3.4.1 Pluripotent very small embryonic-like stem cells (VSELs) are the most primitive stem cells in adult mammalian testis -- 3.4.2 Protocols to detect VSELs in testicular tissue -- 3.4.3 Pluripotent VSELs in adult testes undergo asymmetrical cell divisions -- 3.4.4 Pluripotent VSELs provide an alternate premise to explain testicular germ cell tumors -- 3.5 Discussion and future directions -- Acknowledgments -- References. , 4. Testicular germ cell apoptosis and spermatogenesis -- 4.1 Introduction -- 4.1.1 Proliferative phase of spermatogonia -- 4.1.2 Entry of spermatogenic cells into meiosis -- 4.1.3 Spermiogenesis and attainment of the motility appendage -- 4.1.4 Spermatogenic wave -- 4.2 Germ cell apoptosis -- 4.2.1 Pathways of apoptosis in testis -- 4.2.2 Fas/FasL system: Central regulator of testicular germ cell population -- 4.2.3 Activation of caspase-9 via the intrinsic pathway -- 4.2.4 P53 and spermatogenic cell apoptosis -- 4.3 Executioner caspases -- 4.4 Apoptosis of germ cells caused by hormonal, temperature and chemical insult -- 4.4.1 Hormonal variations -- 4.4.2 Heat stress -- 4.5 Testicular toxicants and germ cell apoptosis -- 4.6 Conclusion -- References -- 5. Hormonal regulation of spermatogenesis -- 5.1 Introduction -- 5.2 Spermatogenesis: An overview -- 5.3 Germ cell regeneration and death -- 5.4 Hypothalamic-pituitary-gonadal axis -- 5.5 Endocrine regulation of spermatogenesis -- 5.5.1 Follicle-stimulating hormone -- 5.5.2 Luteinizing hormone -- 5.5.3 Prolactin -- 5.5.4 Inhibin, activin and follistatin -- 5.5.5 Sex steroids -- 5.5.6 Metabolic hormones and growth factors -- 5.5.7 Other hormones -- 5.6 Sertoli cell interaction with Leydig and peritubular myoid cells -- 5.7 Role of hormones in spermiogenesis and spermiation -- 5.8 Conclusion -- References -- 6. GH-IGF1 axis in spermatogenesis and male fertility -- 6.1 Introduction -- 6.2 Growth hormone and male reproductive system -- 6.2.1 Effects on development -- 6.2.2 Effects on steroidogenesis -- 6.2.3 Effects on spermatogenesis -- 6.2.4 Other functions and mechanisms of regulation -- 6.3 Effects of altered growth hormone secretion on male fertility -- 6.4 Therapeutic use of growth hormone for male infertility -- 6.5 Conclusions -- References. , 7. Retinoic acid signaling in spermatogenesis and male (in)fertility -- 7.1 Introduction -- 7.2 Vitamin A and retinoids -- 7.2.1 Retinoid metabolism -- 7.2.2 Tissue targeting and retinoic acid signaling -- 7.3 Effects of RA on spermatogenesis -- 7.3.1 Evidence of retinoid acid effects in spermatogenesis -- 7.3.2 Expression of retinoids and retinoid receptors in the mammalian testis -- 7.3.3 RA signaling pathways in male germ cells and spermatogenesis -- 7.3.4 Influence of RA on sperm metabolism and oxidative stress -- 7.4 Abnormal RA signaling and human male infertility -- 7.5 Concluding remarks -- References -- 8. Testosterone signaling in spermatogenesis, male fertility and infertility -- 8.1 Introduction -- 8.2 Testosterone production and regulation of the steroidogenic pathway -- 8.3 Classical and nonclassical testosterone signaling -- 8.3.1 Classical testosterone signaling -- 8.3.2 Nonclassical testosterone signaling -- 8.4 Estrogen signaling and testosterone -- 8.5 Regulation of testosterone signaling by melatonin -- 8.6 Melatonin and human fertility -- 8.7 Aberrant testosterone signaling and male infertility -- 8.8 Testosterone therapy for azoospermic men -- 8.9 Conclusion and future directions -- References -- 9. Wnt signaling in spermatogenesis and male infertility -- 9.1 Introduction -- 9.2 Canonical Wnt signaling pathway -- 9.2.1 Wnt/Receptor interactions -- 9.2.2 Signal relay in the cytoplasm -- 9.2.3 Nuclear activity of ß-catenin -- 9.3 Wnt signaling in testis determination and development -- 9.4 Wnt signaling in male germ cell proliferation and maturation -- 9.5 Role of Wnt signaling in development and maintenance of Sertoli cells -- 9.6 Deregulated Wnt signaling and testicular tumor -- 9.7 Wnt signaling in male fertility -- 9.8 Conclusion and future directions -- References -- 10. MAPK signaling in spermatogenesis and male infertility. , 10.1 Introduction -- 10.2 Mitogen-activated protein kinases: An overview -- 10.3 Junction dynamics in spermatogenesis and its regulation -- 10.3.1 MAPK-ERK1/2 signaling in junction dynamics -- 10.3.2 MAPK-p38 in junction dynamics -- 10.3.3 JNK in junction dynamics -- 10.4 MAPK role in germ cell apoptosis -- 10.5 MAPKs in male infertility -- 10.6 Conclusion and future directions -- References -- 11. TGF-ß signaling in testicular development, spermatogenesis, and infertility -- 11.1 Introduction -- 11.2 Components of TGF-ß signaling cascade -- 11.2.1 Ligands -- 11.2.2 Receptors -- 11.2.3 SMAD proteins -- 11.3 Knockout mouse studies -- 11.4 TGF-ß superfamily action in testis -- 11.4.1 TGF-ß signaling -- 11.4.2 Activin signaling -- 11.4.3 Glial cell-derived neurotrophic factor signaling -- 11.4.4 Müllerian inhibiting substance signaling -- 11.4.5 Bone morphogenetic protein signaling -- 11.5 Reproductive disorders associated with aberrant TGF-ß signaling -- 11.5.1 Testicular cancer -- 11.5.2 Disrupted spermatogenesis -- 11.5.3 Leydig cell hyperplasia -- 11.5.4 Sertoli cell-only syndrome (germ cell aplasia) -- 11.5.5 Persistent Müllerian duct syndrome -- 11.6 TGF-ß cross talk with other pathways -- 11.7 Conclusion and future directions -- Acknowledgments -- References -- 12. Notch signaling in spermatogenesis and male (in)fertility -- 12.1 Introduction -- 12.2 Notch signaling: General concepts -- 12.3 How crucial is Notch signaling for spermatogenetic events? -- 12.4 Spermatogenesis in Caenorhabditis elegans and Notch signaling -- 12.5 Cross talk between Notch and other pathways in regulating spermatogenesis in C. elegans -- 12.6 Spermatogenesis in Drosophila melanogaster -- 12.7 Cross talk between Notch and other pathways in D. melanogaster -- 12.8 Spermatogenesis in Mus musculus -- 12.9 Cross talk between Notch and other pathways. , 12.10 Male infertility due to dysregulation of Notch signaling -- 12.11 Concluding remarks and future perspective -- Acknowledgments -- References -- 13. Hedgehog signaling in spermatogenesis and male fertility -- 13.1 Introduction -- 13.2 Hedgehog molecules -- 13.3 Hedgehog signaling in mammals -- 13.4 Hedgehog signaling in spermatogonial stem cell proliferation and differentiation -- 13.5 Indirect hedgehog signaling in SSCs -- 13.6 Direct hedgehog signaling in SSCs -- 13.7 Hedgehog signaling in spermatogenesis -- 13.7.1 Desert hedgehog -- 13.7.2 Sonic hedgehog (Shh) -- 13.7.3 Indian hedgehog -- 13.8 Conclusion -- References -- 14. mTOR signaling in spermatogenesis and male infertility -- 14.1 Introduction -- 14.2 mTOR-signaling pathway and mTOR complexes -- 14.3 Role of mTOR signaling in spermatogenesis -- 14.3.1 mTOR signaling in spermatogonial proliferation and Sertoli cell polarity -- 14.3.2 Role of mTOR signaling in blood-testes barrier -- 14.4 Clinical evidence of the role of mTOR in male fertility -- 14.5 Conclusion -- References -- 15. JAK-STAT pathway: Testicular development, spermatogenesis and fertility -- 15.1 Introduction -- 15.2 Model organisms for studying the JAK-STAT pathway -- 15.3 Components of the JAK-STAT pathway -- 15.3.1 Ligand molecules -- 15.3.2 Receptors -- 15.3.3 Janus kinases -- 15.3.4 Signal transducer for activation of transcription -- 15.3.5 Regulators of the JAK-STAT pathway -- 15.4 JAK-STAT signaling in gonad development -- 15.4.1 Germline sexual development in Drosophila melanogaster -- 15.5 JAK-STAT pathway and spermatogenesis -- 15.5.1 Drosophila testis stem cell niche -- 15.5.2 Intercellular communications -- 15.5.3 Role of JAK-STAT in maintenance of stem cell niche -- 15.5.4 Integration of signaling pathways for stem cell maintenance -- 15.6 JAK-STAT pathway in human sperm capacitation. , 15.7 JAK-STAT pathway in sperm motility.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Animal Physiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (497 pages)
    Edition: 1st ed.
    ISBN: 9789811040177
    DDC: 571.1
    Language: English
    Note: Intro -- Preface -- About the Editors -- Contents -- Contributors -- Abbreviations -- Part I: Understanding Spermatogenesis and Male Fertility -- 1: Overview of the Male Reproductive System -- 1.1 Origin of the Reproductive Organs -- 1.2 Anatomy and Physiology of the Male Reproductive System -- 1.2.1 Scrotum -- 1.2.2 Testes -- 1.2.2.1 Leydig Cells -- 1.2.2.2 Sertoli Cells -- 1.2.2.3 Blood-Testis Barrier -- 1.2.2.4 Germ Cells -- 1.2.2.5 Spermatogenesis -- 1.3 Testosterone -- 1.4 Sperm Transport -- 1.4.1 Epididymis -- 1.4.2 Duct System -- 1.5 Seminal Vesicle -- 1.6 Prostate Gland -- 1.7 Bulbourethral Gland -- 1.8 Urethra -- 1.9 Penis -- 1.10 Structure of Human Mature Sperm -- References -- 2: Embryonic Development of the Testis -- 2.1 Introduction -- 2.2 Overview of the Development of the Testes -- 2.3 Formation of the Primitive Gonads -- 2.4 Cell Lineages -- 2.4.1 Primordial Germ Cells -- 2.4.2 Somatic Cell Lineages in the Male Testis -- 2.4.2.1 Sertoli Cells -- 2.4.2.2 Leydig Cells -- 2.4.2.3 Peritubular Cells -- 2.5 Testicular Descent -- 2.6 Perinatal Events in Testicular Maturation -- 2.7 Cryptorchidism: The Failure of Testicular Descent -- 2.8 Testicular Descent: Associated Disorders -- References -- 3: HPG Axis: The Central Regulator of Spermatogenesis and Male Fertility -- 3.1 Introduction -- 3.2 The Hypothalamic-Pituitary-Gonadal Axis -- 3.3 GnRH Neurons: Origin and Development -- 3.4 Role of FSH and LH in Spermatogenesis -- 3.5 FSH and LH in Human Male Infertility -- 3.6 Endocrine Disruptors: Modulators of the HPG Axis -- 3.7 Melatonin and HPG Axis in Reproductive Health -- References -- 4: Sperm Maturation in Epididymis -- 4.1 Introduction -- 4.2 Epididymal Morphology -- 4.3 Epididymis: The Site of Sperm Maturation -- 4.4 Epididymal Transcriptome and Proteome -- 4.5 Epididymal Secretome. , 4.6 Maturational Changes in Sperm During Epididymal Transit -- 4.7 Development of Motility Potential in Sperm During Epididymal Transit -- References -- 5: Sperm Capacitation: The Obligate Requirement for Male Fertility -- 5.1 Introduction -- 5.2 What Is Sperm Capacitation? -- 5.3 Hallmarks of Capacitation -- 5.3.1 Hyperactivation -- 5.3.2 Acrosome Reaction -- 5.3.3 Protein Tyrosine Phosphorylation -- 5.4 Diagnosis and Prognosis of Male Infertility/Fertility: Importance of Capacitation-Based Sperm Function Tests -- 5.4.1 Monitoring Hyperactivation (HA) -- 5.4.2 Monitoring Acrosome Reaction (AR) -- 5.4.3 Monitoring Tyrosine Phosphorylation (pY) -- 5.5 From Bench to Clinics: Male Fertility Biomarkers and ARTs -- References -- 6: Genomic Landscape of Human Y Chromosome and Male Infertility -- 6.1 Introduction -- 6.2 Y Chromosome and the Azoospermia Factor Region (AZF) -- 6.2.1 AZFa -- 6.2.2 AZFb -- 6.2.3 AZFc -- 6.3 Sex-Determining Region Y (SRY) -- 6.4 Y Chromosome Has Significance Beyond Sex Determination and Spermatogenesis -- 6.5 Oncogenic Role of Y Chromosome -- 6.6 Gene Conversions -- 6.7 Y Chromosome: Evolution and Degeneration -- 6.8 Y Chromosome: Regulation of Autosomal Gene Expression -- 6.9 Future Prospects -- References -- 7: Seminal Decline in Semen Quality in Humans Over the Last 80 years -- 7.1 Introduction -- 7.2 Hallmark Studies Describing a Decline Over the Past 80 years -- 7.3 Factors Alleged for Deteriorating Semen Quality -- 7.4 Discussion and Future Directions -- References -- Part II: Causes of Male Infertility -- 8: Syndromic Forms of Male Infertility -- 8.1 Introduction -- 8.2 Syndromes with Chromosomal Aneuploidy -- 8.2.1 Klinefelter's Syndrome (47,XXY) -- 8.2.2 Jacob's Syndrome (47,XYY) -- 8.3 Syndromes with Gene Mutations -- 8.3.1 Kallmann Syndrome. , 8.3.2 Androgen Insensitivity Syndrome (AIS) -- 8.3.3 Noonan Syndrome -- 8.3.4 Cystic Fibrosis -- 8.4 Rare Syndromes of Male Infertility -- 8.4.1 Myotonic Dystrophy 1 -- 8.4.2 Primary Ciliary Dyskinesia -- 8.4.3 Kearns-Sayre Syndrome -- 8.4.4 Aarskog-Scott Syndrome -- 8.4.5 Persistent Müllerian Duct Syndrome -- 8.4.6 Prader-Willi Syndrome -- 8.4.7 Deafness Infertility Syndrome -- References -- 9: Cystic Fibrosis, CFTR Gene, and Male Infertility -- 9.1 Introduction -- 9.2 Pathogenesis -- 9.3 Epidemiology -- 9.4 Diagnosis -- 9.5 Fertility in Men Having CF -- 9.6 CFTR-Related Disorders Associated with Male Infertility -- 9.6.1 Congenital Bilateral Absence of the Vas Deferens (CBAVD) -- 9.6.2 CBAVD Having Renal Anomalies (CBAVD-URA) -- 9.6.3 Congenital Unilateral Absence of the Vas Deferens (CUAVD) -- 9.6.4 Ejaculatory Duct Obstruction -- 9.7 Infertility Management in CBAVD -- 9.7.1 Assisted Reproduction -- 9.7.2 Genetic Counseling -- 9.7.3 Sperm Collection Techniques -- 9.7.3.1 Percutaneous Epididymal Sperm Aspiration (PESA) -- 9.7.3.2 Microsurgical Epididymal Sperm Aspiration (MESA) -- 9.8 Our Experience -- 9.8.1 CFTR Gene Variants in Isolated CBAVD in Indian Population -- 9.8.2 CBAVD-URA -- 9.9 Future Perspectives -- References -- 10: Oxidative Stress and Male Infertility -- 10.1 Introduction -- 10.2 Significance of ROS in Sperm Function -- 10.3 Sources of ROS in Semen -- 10.4 Oxidative Stress: Potential Origins -- 10.5 Oxidative Stress: A Major Contributor to the Disease Pathology -- 10.6 Oxidative Stress and Declining Semen Quality -- 10.7 Oxidative Stress Correlates with Erectile Dysfunction -- 10.8 Oxidative Stress: Clinical Perspectives and Laboratory Assessment -- 10.9 Management of Oxidative Stress-Induced Male Infertility -- 10.9.1 Antioxidants -- 10.9.2 Other Therapies -- References. , 11: Obesity, Spermatogenesis, and Male Infertility -- 11.1 Introduction -- 11.2 Obesity and Reproduction -- 11.3 Obesity Compromises Testosterone Production -- 11.4 Obesity Disturbs Testosterone: Estrogen Ratio -- 11.5 Obesity Disturbs Scrotal Thermal Regulation -- 11.6 Obesity Increases DNA Damage -- 11.7 Obesity Leads to Transgenerational Epigenetic Effects -- 11.8 microRNAs (miRNAs), Obesity, and Male Infertility -- 11.9 Obesity Correlates with Erectile Dysfunction -- 11.10 Obesity, Adipokines, and Male Infertility -- 11.11 Impact of Childhood Obesity on Puberty -- 11.12 Effect of Maternal Obesity on Fetal Health -- 11.13 Obesity and Quality of Sexual Life -- 11.14 Animal Studies on Obesity and Fertility -- 11.15 Management of Obesity-Related Infertility -- References -- 12: Sexually Transmitted Infections and Male Infertility: Old Enigma, New Insights -- 12.1 Introduction -- 12.2 STD Pathogens: Locus of Infection and Resultant Pathology in the Male Urogenital Tract -- 12.2.1 Urethritis -- 12.2.2 Epididymitis and Orchitis -- 12.2.3 Prostatitis -- 12.2.4 Vesiculitis -- 12.3 Bacterial Infections and Male Infertility -- 12.3.1 Neisseria gonorrhoeae -- 12.3.2 Chlamydia trachomatis -- 12.3.3 Treponema pallidum -- 12.3.4 Mycoplasma Species -- 12.3.5 Ureaplasma Species -- 12.4 Viral Infections and Associated Male Infertility -- 12.4.1 Human Papillomavirus -- 12.4.2 Human Cytomegalovirus -- 12.4.3 Human Immunodeficiency Virus -- 12.4.4 Herpes Simplex Virus -- 12.4.5 Hepatitis B Virus (HBV) -- 12.4.6 Hepatitis C Virus or HCV -- 12.5 Protozoan Infections and Male Infertility -- 12.5.1 Trichomonas vaginalis -- References -- 13: Cytogenetic Factors in Male Infertility -- 13.1 Introduction -- 13.2 SRY Gene Translocation on X Chromosome or Autosomes -- 13.3 Somatic Chromosome Aneuploidies -- 13.3.1 47,XXY. , 13.3.2 47,XYY -- 13.4 Meiotic Abnormalities and Sperm Aneuploidies -- 13.5 Chromosomal Translocations and Inversions -- 13.6 The Interchromosomal Effects -- 13.7 Sperm Aneuploidies and Adverse Reproductive Outcomes -- 13.8 Advances in Human Molecular Cytogenetics: From Chromosomes to SNPs -- 13.8.1 Multiplex-Fluorescence In Situ Hybridization (M-FISH) and Spectral Karyotyping (SKY) -- 13.8.2 Combining Binary and Ratio Labelling (COBRA-FISH) -- 13.8.3 Array-Based CGH -- 13.8.4 Single-Nucleotide Polymorphism Array (SNP Array) -- 13.8.5 Next-Generation Sequencing (NGS) -- References -- 14: Autosomal Genes in Male Infertility -- 14.1 Introduction -- 14.2 Genes in Gonadal Development and Fertility: Establishing Fertility -- 14.3 Autosomal Pathways in Spermatogenesis -- 14.3.1 Infertility and Apoptosis: Eliminating the Unfit -- 14.3.1.1 Intrinsic Pathway -- 14.3.1.2 Extrinsic Pathway -- 14.3.2 DNA Damage, Replication and Repair Pathways: Keeping It Correct -- 14.3.3 Hormonal/Endocrine Pathways -- 14.4 Standalone Drivers from the Autosomal Store -- References -- 15: Sex Chromosomal Genes in Male Infertility -- 15.1 Introduction -- 15.2 Y Deletions Are Common in Infertility -- 15.3 Screening of Y deletions -- 15.4 Classical Deletions/Microdeletions -- 15.5 Partial Deletions -- 15.5.1 gr/gr Is a Risk Factor for Male Infertility -- 15.5.2 b2/b3 May Increase Risk in Some Ethnic Groups -- 15.6 Y Haplotypes -- 15.6.1 Terminology and Nomenclature of Y Haplotypes -- 15.6.2 Y Haplotypes and Male Infertility -- 15.7 Genes on the X Chromosome -- 15.8 X-Linked Testis-Specific or Testis-Enriched Genes -- 15.9 Mutation Analysis of Human X-Linked and Testis-­Enriched Genes -- 15.9.1 A-Kinase Anchor Protein 4 (AKAP4) -- 15.9.2 Fetal and Adult Expressed 1 (FATE1) -- 15.9.3 TATA Box Binding Protein-Associated Factor 7 Like (TAF7L). , 15.9.4 Ubiquitin-Specific Peptidase 26 (USP26).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of radioanalytical and nuclear chemistry 118 (1987), S. 433-436 
    ISSN: 1588-2780
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The perturbed angular correlation /P.A.C./ technique is employed to investigate the structures of barium ferrite and barium hexaferrite using radioactive133Ba /10.7 Y/ as a probe. The quadrupole interaction frequencies /WQ'S/ are found to be 9.68 and 12.02 Mrad sec−1 for barium ferrite and barium hexaferrite, respectively, showing a drift from usual cubic structure.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    X-Ray Spectrometry 17 (1988), S. 99-101 
    ISSN: 0049-8246
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: A method has been devised to test the correctness of relationships for computing L shell vacancies in radionuclides following electron capture and internal conversions. The average L shell fluorescence yields in eleven elements have been derived from a comparison of computed vacancies and measured subshell intensities. The validity of the relationships derived earlier is confirmed.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-02
    Description: Polymorphisms in the 〈i〉XPC〈/i〉 gene affect urinary bladder cancer risk: a case-control study, meta-analyses and trial sequential analyses Scientific Reports, Published online: 1 June 2016; doi:10.1038/srep27018
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-26
    Description: RAD51 is a homolog of bacterial RecA protein, which plays an important role in preserving stability of the genome. RAD51 interacts with BRCA1 and BRCA2 for homologous recombination repair. A functional polymorphism (135G 〉 C) in the RAD51 gene has been a subject of great interest, which is evidenced by at least 28 case-control studies and eight meta-analyses undertaken on this polymorphism till now. We undertook a meta-analysis on RAD51 135G 〉 C data for 21236 cases and 19407 controls pooled from 28 studies on breast cancer in women. Pooled data analysis suggested a significant association of the substitution with breast cancer in the recessive model (GG + GC versus CC) and in the co-dominant models comparing GG versus CC and GC versus CC. Analysis of the results suggested that ‘CC’ genotype is a significant breast cancer risk factor in comparison to ‘GG’ and ‘GC’ genotypes. We also undertook pooled analyses on different ethnic groups and found that ‘CC’ was a strong risk factor in Caucasians, but not in East-Asians and populations of mixed ethnicity. In conclusion, the RAD51 135G 〉 C substitution in the homozygous form (CC) increases the risk of breast cancer in an ethnic-specific manner. Scientific Reports 5 doi: 10.1038/srep11588
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-25
    Description: Estrogen Receptor-β (ER-β), a tumor-suppressor in prostate cancer, is epigenetically repressed by hypermethylation of its promoter. DNA-methyltransferases (DNMTs), which catalyze the transfer of methyl-groups to CpG islands of gene promoters, are overactive in cancers and can be inhibited by DNMT-inhibitors to re-express the tumor suppressors. The FDA-approved nucleoside DNMT-inhibitors like 5-Azacytidine and 5-Aza-deoxycytidine carry notable concerns due to their off-target toxicity, therefore non-nucleoside DNMT inhibitors are desirable for prolonged epigenetic therapy. Disulfiram (DSF), an antabuse drug, inhibits DNMT and prevents proliferation of cells in prostate and other cancers, plausibly through the re-expression of tumor suppressors like ER-β. To increase the DNMT-inhibitory activity of DSF, its chemical scaffold was optimized and compound-339 was discovered as a doubly potent DSF-derivative with similar off-target toxicity. It potently and selectively inhibited cell proliferation of prostate cancer (PC3/DU145) cells in comparison to normal (non-cancer) cells by promoting cell-cycle arrest and apoptosis, accompanied with inhibition of total DNMT activity, and re-expression of ER-β (mRNA/protein). Bisulfite-sequencing of ER-β promoter revealed that compound-339 demethylated CpG sites more efficaciously than DSF, restoring near-normal methylation status of ER-β promoter. Compound-339 docked on to the MTase domain of DNMT1 with half the energy of DSF. In xenograft mice-model, the tumor volume regressed by 24% and 50% after treatment with DSF and compound-339, respectively, with increase in ER-β expression. Apparently both compounds inhibit prostate cancer cell proliferation by re-expressing the epigenetically repressed tumor-suppressor ER-β through inhibition of DNMT activity. Compound-339 presents a new lead for further study as an anti-prostate cancer agent. © 2015 Wiley Periodicals, Inc.
    Print ISSN: 0899-1987
    Electronic ISSN: 1098-2744
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...