GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2024-04-20
    Description: We provide seismic refraction and wide-angle data from two profile shot across the marine fore-arc of Nicaragua, Central Maerica. Profiles NIC20 and NIC50 were obtained aboard the US R/V Maurice Ewing cruise EW00–05 in 2000. All profile run across the condinantal margin and provide in total 26 digital record sections.
    Keywords: 1992 Nicaragua tsunami earthquake; Binary Object; Binary Object (File Size); Event label; EW0005; EW0005_NIC20; EW0005_NIC50; EW0005_OBH01; EW0005_OBH02; EW0005_OBH03; EW0005_OBH04; EW0005_OBH05; EW0005_OBH06; EW0005_OBH07; EW0005_OBH08; EW0005_OBH09; EW0005_OBH10; EW0005_OBH11; EW0005_OBH12; EW0005_OBH13; EW0005_OBH15; EW0005_OBH16; EW0005_OBH17; EW0005_OBH19; EW0005_OBH20; EW0005_OBH21; EW0005_OBH22; EW0005_OBH23; EW0005_OBH24; EW0005_OBH25; EW0005_OBH26; EW0005_OBH27; EW0005_OBH28; File content; Latitude of event; Longitude of event; Marine Fore-arc; Maurice Ewing; North Pacific Ocean; OBH; Ocean bottom hydrophone; SEIS; Seismic; seismic refraction; Seismic structure; Seismic tomography
    Type: Dataset
    Format: text/tab-separated-values, 30 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: Multibeam bathymetry raw data was recorded in the North Pacific during cruise SO96/1 that took place between 1994-06-09 and 1994-06-27. The data was collected using the ship's own Atlas Hydrosweep DS echo sounder.
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); Comment; DAM_Underway; DAM Underway Research Data; Data file recording distance; Data file recording duration; DATE/TIME; ELEVATION; Event label; File content; KODIAKSEIS; LATITUDE; LONGITUDE; Number of pings; Ship speed; SO96/1; SO96/1_0_Underway-1; Sonne; Start of data file, depth; Start of data file, heading; Start of data file recording, date/time; Start of data file recording, latitude; Start of data file recording, longitude; Stop of data file, depth; Stop of data file, heading; Stop of data file recording, date/time; Stop of data file recording, latitude; Stop of data file recording, longitude
    Type: Dataset
    Format: text/tab-separated-values, 493 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Highlights • Crustal thickness of the Lofoten/Vesterålen shelf is greater than old study suggested. • Mafic lower crust of the shelf area explains observed resistance to deformation. • Four Mesozoic-Cenozoic erosion episodes are indicated by sedimentary velocities vs burial. • Extensive erosion episodes are likely to be detrimental to petroleum potential. Abstract The Norwegian continental shelf has been through several rift phases since the Caledonian orogeny. Early Cretaceous rifting created the largest sedimentary basins, and Early Cenozoic continental breakup between East Greenland and Europe affected the continental shelf to various degrees. The Lofoten/Vesterålen shelf is located off Northern Norway, bordering the epicontinental Barents Sea to the northeast, and the deep-water Lofoten Basin to the west. An ocean bottom seismometer/hydrophone (OBS) survey was conducted over the shelf and margin areas in 2003 to constrain crustal structure and margin development. This study presents Profile 8-03, located between the islands of Lofoten/Vesterålen and the shelf edge. The wide-angle seismic data were modeled using forward/inverse raytracing to build a crustal velocity-depth transect. Gravity modeling was used to resolve an ambiguity in seismic Moho identification in the southwestern part. Results show a crustal thickness of ~31 km, significantly thicker than what a vintage land station based study suggested. Profile 8-03 and other OBS profiles to the southwest show high sedimentary velocities at or near the seafloor, increasing rapidly with depth. Sedimentary velocities were compared to the velocity-depth function derived from an OBS profile at the Barents Sea margin, tied to a coincident well log, where there is little erosion. Results from this profile and the crossing Profile 6-03 (Breivik et al. 2017) indicate three major erosion episodes; Late Triassic-Early Jurassic, tentatively mid-Cretaceous, Late Cretaceous–early Cenozoic, and a minor late glacial erosion episode off Vesterålen.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...