GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2024  (1)
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Neurosciences. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (318 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030229894
    Serie: Masterclass in Neuroendocrinology Series ; v.8
    DDC: 612.79999999999995
    Sprache: Englisch
    Anmerkung: Intro -- Series Preface -- Volume Preface -- Contents -- Contributors -- 1: Neurosecretion: A Historical Overview -- 1.1 Introduction -- 1.2 Origin of the Concept of Neurosecretion and the Advent of Neuroendocrinology -- 1.3 Invertebrate and Vertebrate Neurosecretory Systems as Experimental Models -- 1.4 The Biosynthesis of Oxytocin and Vasopressin: A Critical Role for NSVs -- 1.5 Concluding Remarks -- Key References: See Main List for Reference Details -- References -- 2: Neurosecretion: Hypothalamic Somata versus Neurohypophysial Terminals -- 2.1 Introduction -- 2.2 The Hypothalamic-Neurohypophysial System (HNS) -- Box 2.1 Loose Patch-Clamp on NH Terminals (NHTs) versus MCNs -- 2.2.1 Depolarization-Secretion Coupling (DSC) -- 2.3 Magnocellular Neurons -- 2.3.1 VGCC Regulation of Depolarization-Secretion Coupling in Somatodendrites -- 2.3.2 Autocrine Regulation of Magnocellular Neurons by Somatodendritic Release of AVP/OT -- 2.3.3 [Ca2+]i Homeostasis and [Ca2+]i Clearance Mechanisms in the Somatadendrites of AVP and OT Neurons -- 2.3.4 [Ca2+]i Oscillations in the Somata of AVP and OT Neurons -- Box 2.2 Measurements of [Ca2+]i and Spontaneous Calcium Oscillations in MCNs -- 2.3.5 Mechanism for Facilitation of Release in Cell Bodies -- 2.4 Neurohypophysial Nerve Terminals -- 2.4.1 VGCC Regulation of Depolarization-Secretion Coupling in Terminals -- 2.4.2 Autocrine Regulation of Terminals by Release of AVP/OT? -- 2.4.3 Mechanisms of Cytosolic [Ca2+]i Increases in Terminals -- Box 2.3 Measuring Intracellular Ca2+ in NH Terminals (NHTs) -- 2.4.4 Terminals Utilize RyR in Neurosecretory Granules (NSG) to Regulate OT Release -- 2.4.5 Mechanisms of Cytosolic [Ca2+]i Clearance in Terminals -- 2.4.6 Role of Vesicular Ca2+ Stores -- 2.4.7 Mechanism for Facilitation of Release in Terminals -- 2.4.8 Trafficking of NSG Between Release Pools. , 2.4.9 SNARE-Mediated Exocytosis in Somata versus Terminals -- Box 2.4 SNARE-Mediated Fusion in Reconstituted System -- 2.5 Conclusions -- Key References: See Main List for Reference Details -- References -- 3: Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus -- 3.1 Introduction -- Box 3.1 CD38 -- 3.2 [Ca2+]i Increase by cADPR and Heat -- Box 3.2 OT Release from the Whole Hypothalamus -- 3.3 Individual Variation in OT Release from the Isolated Hypothalamus -- Box 3.3 Social Stress -- 3.4 In Vivo OT Release Associated with Hyperthermia Induced by Stress -- Box 3.4 Cerebrospinal Fluid (CSF) Sampling -- 3.5 CD38 and TRPM2 mRNA Expression -- 3.6 Implication of Oxytocin Release for Stress and Autism -- Key References: See Main List for Reference Details -- References -- 4: Somato-Dendritic Secretion of Neuropeptides -- 4.1 Introduction -- 4.2 Magnocellular Neurons -- 4.3 Regulation of Somato-Dendritic Secretion in Magnocellular Neurons -- 4.4 Physiological Functions of Somato-Dendritic Neuropeptide Secretion -- 4.4.1 Autocrine Regulation of Vasopressin Neuron Activity -- Box 4.1 In Vivo Extracellular Single-Unit Recording from the Supraoptic Nucleus with Microdialysis Drug Application in Anesthe... -- 4.4.1.1 Autocrine Regulation of Vasopressin Neuron Activity by Co-released Neurotransmitters -- 4.4.2 Paracrine Regulation of Preautonomic Neuron Activity by Somato-Dendritic Vasopressin Secretion -- Box 4.2 Retrograde Labeling of Axon Projections -- 4.4.3 Autocrine Regulation of Oxytocin Neuron Activity -- 4.4.3.1 Burst Firing in Oxytocin Neurons -- 4.4.3.2 Morphine Dependence in Oxytocin Neurons -- 4.4.3.3 Co-expressed Neuropeptides -- 4.4.4 Paracrine Regulation of Behavior by Somato-Dendritic Oxytocin Secretion -- 4.4.4.1 Regulation of Energy Balance by Somato-Dendritic Oxytocin. , 4.4.4.2 Regulation of Social Behavior by Somato-Dendritic Oxytocin -- 4.5 Perspectives -- Key References: See Main List for Reference Details -- References -- Further Recommended Reading -- 5: Neurosecretory Vesicles: Structure, Distribution, Release and Breakdown -- 5.1 Introduction -- 5.2 Evolution of Neurosecretory Vesicles -- 5.3 Formation of Neurosecretory Vesicles -- 5.4 Dense-Cored and Electron-Lucent Vesicles in Neurosecretory Terminals -- 5.5 Size, Shape and Electron Density of Neurosecretory Dense-Cored Vesicles -- 5.5.1 Preparation Procedure Effects -- 5.5.2 Estimates of Peptide Content of a DCV -- 5.6 Core Content of Neurosecretory Dense-Cored Vesicles -- 5.6.1 Co-packaged Neuroactive Compounds -- 5.6.2 Co-packaged Proteolytic Enzymes and Enzyme Inhibitor -- 5.7 Membrane Proteins of Dense-Cored Vesicles -- 5.7.1 Vesicle Membrane and Core Stability -- 5.8 Dense-Cored Vesicle Trafficking -- 5.9 Are the Vesicles in the Axons and Dendrites Similar? -- 5.10 What Is the Readily Releasable Pool of Dense-Cored Vesicles? -- 5.11 Dense-Cored Vesicles also Transport Receptors to the Cell Surface -- 5.12 Exocytosis of Dense-Cored Neurosecretory Vesicles: Mechanism -- 5.12.1 Location of Exocytosis of Neurosecretory Dense-Cored Vesicles -- 5.13 Destruction of Dense-Cored Vesicles -- 5.14 Conclusions -- Key References: See Main List for Reference Details -- References -- 6: Molecular Controls on Regulated Neurotransmitter and Neurohormone Secretion -- 6.1 Introduction -- 6.2 Calcium-Dependent Exocytosis Is a Multistep Process -- 6.3 Munc-18 -- 6.4 Rab GTPases -- 6.4.1 A Functional Model for Rab3 as a ``Clamp´´ -- 6.4.2 Functional Overlap Between Rab GTPases -- 6.4.3 Regulators of Rab Function -- 6.5 Tomosyn -- Box 6.1 Directly Visualizing Neurotransmitter Release or Vesicle Cycling Using Fluorescence -- 6.5.1 Tomosyn Proteins as ``Clamps´´. , 6.5.2 Proposed Mechanism for Tomosyn Proteins as ``Clamps´´ -- 6.6 Conclusions -- Key References: See Main List for Reference Details -- References -- 7: Secretory Astrocytes -- 7.1 Homoeostatic Astrocytes -- 7.2 Gliocrine System -- 7.3 Mechanisms of Astroglial Secretion -- 7.3.1 Exocytosis and Secretory Organelles in Astrocytes -- 7.3.2 Release Through Plasmalemmal Channels -- 7.3.3 Transporter-Mediated Release -- 7.4 Astroglia-Derived Secretory Molecules -- 7.4.1 Neurotransmitters -- 7.4.2 Neuromodulators -- 7.4.3 Hormones -- 7.4.4 Growth Factors -- 7.4.5 Neuropeptides -- 7.4.6 Polyamines -- 7.5 Astroglial Vesicle Exocytotic Mechanisms -- Box 7.1 Capacitance to Measure Exocytosis -- 7.6 Conclusions and Perspectives -- Key References: See Main List for Reference Details -- References -- 8: Action Potential-Induced Ca2+ Influx for Both Acute and Sustained Insulin Secretion in Pancreatic Beta Cells -- 8.1 Simultaneous Monitoring of Regulatory Molecules and Exocytosis in Pancreatic Beta Cells -- Box 8.1 Patch-Clamp Capacitance Measurement of Exocytosis -- Box 8.2 FRET Imaging -- 8.2 Sustained Insulin Secretion Requires Ca2+-Dependent Vesicle Recycling -- 8.2.1 cAMP/PKA Signaling in Insulin Secretion -- Box 8.3 Simultaneous Recordings of [Ca2+]i and PKA Activity -- 8.2.2 Ca2+-Dependent Adenylyl Cyclase in Pancreatic Beta Cells -- 8.3 Conclusion and Future Directions -- Key References: See Main List for Reference Details -- References -- 9: Plasticity in the Morphology of Lactotrophs and Folliculo-Stellate Cells and Prolactin Secretion -- 9.1 Introduction -- 9.1.1 Lactotrophs, the Prolactin-Secreting Cells of the Anterior Pituitary -- 9.1.2 Prenatal Development of Lactotrophs -- 9.1.3 Postnatal Proliferation of Lactotrophs -- 9.2 Morphological Heterogeneity of Lactotrophs -- 9.2.1 Age and Sex Variation in the Proportion of Lactotroph Subtypes. , 9.2.2 Proportion of Lactotroph Subtypes After Ovariectomy and Estradiol Replacement -- 9.2.3 Estrous Cycle Variation in the Proportion of Lactotroph Subtypes -- 9.2.4 Morphological Subtype Proportions in Pregnancy and Lactation -- 9.2.5 Age-Related Changes in PRL Synthesis, Secretion and Lactotroph Morphology -- 9.3 Functional Heterogeneity of Lactotrophs -- 9.3.1 Different Morphological Types of Lactotroph Respond Differently to PRL Secretagogues -- 9.4 Prolactin Cell Plasticity and Coordination of Prolactin Secretion -- 9.5 Folliculo-Stellate Cells -- 9.5.1 Development of Folliculo-Stellate Cells -- 9.5.2 FS Cell Networks -- 9.5.3 Folliculo-Stellate Cell Function in Paracrine Communication -- 9.5.4 Plasticity in Folliculo-Stellate Cells with Changing Endocrine Status -- 9.5.5 Plasticity of Folliculo-Stellate Cells in Aging -- 9.6 Seasonal Plasticity in Lactotrophs and Folliculo-Stellate Cells in the Ovine Pituitary -- 9.7 Seasonal Plasticity in the Ovine Pituitary Pars Tuberalis -- 9.8 Coordinated Secretion: Relationship Between Pituitary Cells and the Pituitary Vasculature -- 9.9 Conclusions -- Key References: See Main List for Reference Details -- References -- 10: Neuroendocrine and Metabolic Regulation of Plasma Growth Hormone Secretory Profiles -- 10.1 Introduction -- 10.2 Pulsatility: A Fundamental Property of GH Secretion -- 10.2.1 Sex Differences -- 10.2.2 Target Tissue Responses -- 10.2.3 Sleep -- 10.2.4 GH Pattern Summary -- 10.3 Changes of GH Secretion Relative to Energy Balance and Species -- 10.3.1 Adiposity Inversely Correlates to GH Secretion under Positive Energy Balance -- 10.3.1.1 Insulin, a Potent Regulator of GH under Postive Energy Balance -- 10.3.2 GH Secretion in Large Mammals under Negative Energy Balance -- 10.3.3 GH Secretion in Small Mammals under Negative Energy Balance. , 10.3.4 Summary of GH Secretion over Postive or Negative Energy Balance.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...