GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-09
    Description: The eastern tropical South Pacific (ETSP) represents one of the most productive areas in the ocean that is characterized by a pronounced oxygen minimum zone (OMZ). Particulate organic matter (POM) that sinks out of the euphotic zone is supplied to the anoxic sediments and utilized by microbial communities. The degradation of POM is associated with dissolved organic matter (DOM) production and reworking. The release of recalcitrant DOM to the overlying waters may represent an important organic matter escape mechanism from remineralization within sediments but received little attention in OMZ regions so far. Here, we combine measurements of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) with DOM optical properties in the form of chromophoric (CDOM) and fluorescent (FDOM) DOM from pore waters and near-bottom waters of the ETSP off Peru. We evaluate diffusion–driven fluxes and net in situ fluxes of DOC and DON in order to investigate processes affecting DOM cycling at the sediment–water interface along a transect 12° S. To our knowledge, these are the first data for sediment release of DON and pore water CDOM and FDOM for the ETSP off Peru. Pore-water DOC and DON accumulated with increasing sediment depth, suggesting an imbalance between DOM production and remineralization within sediments. High DON accumulation resulted in very low pore water DOC / DON ratios (〉 1) which could be caused by either an "imbalance" in DOC and DON remineralization, or to the presence of an additional nitrogen source. Diffusion driven fluxes of DOC and DON exhibited high spatial variability. They varied from 0.2–0.1 mmol m−2 d−1 to 2.52–1.3 mmol m−2 d−1 and from −0.042–0.02 mmol m−2 d−1 to 3.32–1.7 mmol m−2 d−1, respectively. Generally low net in situ DOC and DON fluxes as well as steepening of spectral slope (S) of CDOM and accumulation of humic-like FDOM at the near-bottom waters over time indicated active microbial DOM utilization at the sediment–water interface, potentially stimulated by nitrate (NO3−) and nitrite (NO2−). The microbial DOC utilization rates, estimated in our study, may be sufficient to support denitrification rates of 0.2–1.4 mmol m−2 d−1, suggesting that sediment release of DOM contributes substantially to nitrogen loss processes in the ETSP off Peru.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The intraseasonal evolution of physical and biogeochemical properties during a coastal trapped wave event off central Peru is analysed using data from an extensive shipboard observational programme conducted between April and June 2017, and remote sensing data. The poleward velocities in the Peru–Chile Undercurrent were highly variable and strongly intensified to above 0.5 m s−1 between the middle and end of May. This intensification was likely caused by a first-baroclinic-mode downwelling coastal trapped wave, excited by a westerly wind anomaly at the Equator and originating at about 95∘ W. Local winds along the South American coast did not impact the wave. Although there is general agreement between the observed cross-shore-depth velocity structure of the coastal trapped wave and the velocity structure of first vertical mode solution of a linear wave model, there are differences in the details of the two flow distributions. The enhanced poleward flow increased water mass advection from the equatorial current system to the study site. The resulting shorter alongshore transit times between the Equator and the coast off central Peru led to a strong increase in nitrate concentrations, less anoxic water, likely less fixed nitrogen loss to N2 and a decrease of the nitrogen deficit compared to the situation before the poleward flow intensification. This study highlights the role of changes in the alongshore advection due to coastal trapped waves for the nutrient budget and the cumulative strength of N cycling in the Peruvian oxygen minimum zone. Enhanced availability of nitrate may impact a range of pelagic and benthic elemental cycles, as it represents a major electron acceptor for organic carbon degradation during denitrification and is involved in sulfide oxidation in sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Sediments in oxygen-depleted marine environments can be an important sink or source of bio-essential trace metals in the ocean. However, the key mechanisms controlling the release from or burial of trace metals in sediments are not exactly understood. Here, we investigate the benthic biogeochemical cycling of Fe and Cd in the oxygen minimum zone off Peru. We combine bottom water profiles, pore water profiles, as well as benthic fluxes determined from pore water profiles and in-situ from benthic chamber incubations along a depth transect at 12° S. In agreement with previous studies, both concentration-depth profiles and in-situ benthic fluxes indicate a Fe release from sediments into bottom waters. Diffusive Fe fluxes and Fe fluxes from benthic chamber incubations are roughly consistent (0.3–17.1 mmol m−2 y−1), indicating that diffusion is the main transport mechanism of dissolved Fe across the sediment-water interface. The occurrence of mats of sulfur oxidizing bacteria on the seafloor represents an important control on the spatial distribution of Fe fluxes by regulating hydrogen sulfide (H2S) concentrations and, potentially, Fe sulfide precipitation within the surface sediment. Removal of dissolved Fe after its release to anoxic bottom waters is rapid in the first 4 m away from the seafloor (half-life 〈 3 min) which hints to oxidative removal by nitrite or interaction with particles in the benthic boundary layer. Benthic flux estimates of Cd are indicative of a flux into the sediment within the oxygen minimum zone. Fluxes from benthic chamber incubations (up to 22.6 µmol m−2 y−1) exceed the diffusive fluxes (〈 1 µmol m−2 y−1) by a factor 〉 25, indicating that downward diffusion of Cd across the sediment-water interface is of subordinate importance for Cd removal from benthic chambers. As Cd removal in benthic chambers co-varies with H2S concentrations in the pore water of surface sediments, we argue that Cd removal is mediated by precipitation of CdS within the chamber. A mass balance approach, taking into account the contributions of diffusive fluxes and fluxes measured in benthic chambers as well as Cd delivery with organic material suggests that CdS precipitation in the near-bottom water could make an important contribution to the overall Cd mass accumulation in the sediment solid phase. According to our results, the solubility of trace metal sulfide minerals (Cd 〈〈 Fe) is a key-factor controlling trace metal removal and consequently the magnitude as well as the temporal and spatial heterogeneity of sedimentary fluxes. We argue that depending on their sulfide solubility, sedimentary source or sink fluxes of trace metals will change differentially as a result of declining oxygen concentrations and an associated expansion of sulfidic surface sediments. Such a trend could cause a change in the trace metal stoichiometry of upwelling water masses with potential consequences for marine ecosystems in the surface ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Microbial cells buried in subseafloor sediments comprise a substantial portion of Earth’s biosphere and control global biogeochemical cycles; however, the rate at which they use energy (i.e., power) is virtually unknown. Here, we quantify organic matter degradation and calculate the power utilization of microbial cells throughout Earth’s Quaternary-age subseafloor sediments. Aerobic respiration, sulfate reduction, and methanogenesis mediate 6.9, 64.5, and 28.6% of global subseafloor organic matter degradation, respectively. The total power utilization of the subseafloor sediment biosphere is 37.3 gigawatts, less than 0.1% of the power produced in the marine photic zone. Aerobic heterotrophs use the largest share of global power (54.5%) with a median power utilization of 2.23 × 10 −18 watts per cell, while sulfate reducers and methanogens use 1.08 × 10 −19 and 1.50 × 10 −20 watts per cell, respectively. Most subseafloor cells subsist at energy fluxes lower than have previously been shown to support life, calling into question the power limit to life.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Phosphorus is essential for all living organisms, being a component of DNA and RNA and the energy carrier ATP. Phosphogenesis is a main sink of reactive phosphorus in the oceans. The present study reports the presence of intracellular dissolved inorganic phosphate (DIP) in benthic foraminifera from the Peruvian oxygen minimum zone (OMZ). The mean intracellular DIP concentration was 28 ± 3 mM; two to three orders-of-magnitude higher than in the ambient pore waters. The biological implications of the high intracellular phosphate enrichment may be related to the synthesis of polyphosphates or phospholipids for cell-membranes. The comparative genomics analysis of multiple species of foraminifera from different environments reveals that foraminifers encode the genes required for both phospholipid and polyphosphate metabolism. Rapid phosphogenesis and phosphorite formation associated with foraminiferal tests is hypothesized due to the pre-concentration of intracellular phosphate in these organisms. The results indicate that foraminifera may play a key and previously overlooked role in the global phosphorus cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Microbial degradation of organic carbon in marine sediments is a key driver of global element cycles on multiple time scales. However, it is not known to what depth microorganisms alter organic carbon in marine sediments or how microbial rates of organic carbon processing change with depth, and thus time since burial, on a global scale. To better understand the connection between the dynamic carbon cycle and life’s limits in the deep subsurface, we have combined a number of global data sets with a reaction transport model (RTM) describing first, organic carbon degradation in marine sediments deposited throughout the Quaternary Period and second, a bioenergetic model for microbial activity. The RTM is applied globally, recognizing three distinct depositional environments – continental shelf, margin and abyssal zones. The results include the masses of particulate organic carbon, POC, stored in three sediment-depth layers: bioturbated Holocene (1.7 × 10^17 g C), non-bioturbated Holocene (2.6 × 10^18 g C) and Pleistocene (1.4 × 1020 g C) sediments. The global depth-integrated rates of POC degradation have been determined to be 6.8 × 10^13, 1.2 × 10^14 and 1.2 × 10^14 g C yr-1 for the same three layers, respectively. A number of maps depicting the distribution of POC, as well as the fraction that has been degraded have also been generated. Using POC degradation as a proxy for microbial catabolic activity, total heterotrophic processing of POC throughout the Quaternary is estimated to be between 10^-11 – 10^-6 g C cm-3 yr-1, depending on the time since deposition and location. Bioenergetic modeling reveals that laboratory-determined microbial maintenance powers are poor predictors of sediment biomass concentration, but that cell concentrations in marine sediments can be accurately predicted by combining bioenergetic models with the rates of POC degradation determined in this study. Our model can be used to quantitatively describe both the carbon cycle and microbial activity on a global scale for marine sediments less than 2.59 million years old.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-08
    Description: Ocean alkalinity enhancement (OAE) is an emerging strategy that aims to mitigate climate change by increasing the alkalinity of seawater. This approach involves increasing the alkalinity of the ocean to enhance its capacity to absorb and store carbon dioxide (CO2) from the atmosphere. This chapter presents an overview of the technical aspects associated with the full range of OAE methods being pursued and discusses implications for undertaking research on these approaches. Various methods have been developed to implement OAE, including the direct injection of alkaline liquid into the surface ocean; dispersal of alkaline particles from ships, platforms, or pipes; the addition of minerals to coastal environments; and the electrochemical removal of acid from seawater. Each method has its advantages and challenges, such as scalability, cost effectiveness, and potential environmental impacts. The choice of technique may depend on factors such as regional oceanographic conditions, alkalinity source availability, and engineering feasibility. This chapter considers electrochemical methods, the accelerated weathering of limestone, ocean liming, the creation of hydrated carbonates, and the addition of minerals to coastal environments. In each case, the technical aspects of the technologies are considered, and implications for best-practice research are drawn. The environmental and social impacts of OAE will likely depend on the specific technology and the local context in which it is deployed. Therefore, it is essential that the technical feasibility of OAE is undertaken in parallel with, and informed by, wider impact assessments. While OAE shows promise as a potential climate change mitigation strategy, it is essential to acknowledge its limitations and uncertainties. Further research and development are needed to understand the long-term effects, optimize techniques, and address potential unintended consequences. OAE should be viewed as complementary to extensive emission reductions, and its feasibility may be improved if it is operated using energy and supply chains with minimal CO2 emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-08
    Description: An essential prerequisite for the implementation of ocean alkalinity enhancement (OAE) applications is their environmental safety. Only if it can be ensured that ecosystem health and ecosystem services are not at risk will the implementation of OAE move forward. Public opinion on OAEs will depend first and foremost on reliable evidence that no harm will be done to marine ecosystems and licensing authorities will demand measurable criteria against which environmental sustainability can be determined. In this context mesocosm experiments represent a highly valuable tool in determining the safe operating space of OAE applications. By combining realism and biological complexity with controllability and replication they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications. This chapter outlines strengths and weaknesses of mesocosm approaches, illustrates mesocosm facilities and suitable experimental designs presently employed in OAE research, describes critical steps in mesocosm operation, and discusses possible approaches for alkalinity manipulation and monitoring. Building on a general treatise on each of these aspects, the chapter describes pelagic and benthic mesocosm approaches separately, given their inherent differences. The chapter concludes with recommendations for best practices in OAE-related mesocosm research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Marine sediments are an important source and sink of bio-essential trace metals to the ocean. However, the different mechanisms leading to trace metal release or burial are not fully understood and the associated fluxes are not well quantified. Here, we present sediment, pore water, sequential extraction and benthic flux data of Mn, Co, Ni, Cu, Zn and Cd along a latitudinal depth transect across the Peruvian oxygen minimum zone at 12°S. Sediments are depleted in Mn and Co compared to the lithogenic background. Diffusive Mn fluxes from the sediments into the bottom water (−26 to −550 μmol m−2 y−1) are largely consistent with the rate of Mn loss from the solid phase (−100 to −1160 μmol m−2 yr−1) suggesting that 50% or more of the sedimentary Mn depletion is attributed to benthic efflux. In contrast, benthic Co fluxes (~ −3 μmol m−2 yr−1) are lower than the rate of Co loss from the solid phase (up to −120 μmol m−2 yr−1), implying Co dissolution in the water column. The trace metals Ni, Cu, Zn and Cd are enriched within the sediments with respect to the lithogenic background. Uptake of Ni by phytoplankton in the photic zone and delivery with organic matter to the sediment surface can account for up to 100% of the excess Ni accumulation (87 to 180 μmol m−2 y−1) in shelf sediments near the coast, whereas at greater water depth additional scavenging by Mn- and Fe-oxides may contribute to Ni accumulation. Up to 20% of excess Cu (33 to 590 μmol m−2 y−1) and generally less than 20% of excess Zn (58 to 2170 μmol m−2 y−1) and Cd (6 to 260 μmol m−2 y−1) can be explained by delivery with fresh organic matter. Sequential extraction data suggest that the discrepancies between the known sources of Cd (and Cu) and their excess accumulation may be driven by the delivery of allochthonous sulphide minerals precipitated from the water column. Additionally, Cu may be scavenged by downward sinking organic material. In contrast, precipitation of Zn sulphide chiefly takes place in the sediment. Diffusive Zn fluxes into the sediment (21 to 1990 μmol m−2 y−1) match the excess Zn accumulation suggesting that Zn delivery is mediated by molecular diffusion from bottom waters. Considering the diverse behavioural pattern of trace metals observed in this study, we argue that declining oxygen and increasing hydrogen sulphide concentrations in a future ocean will modify trace metal fluxes at the seafloor and the trace metal stoichiometry of seawater.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: A new box model is employed to simulate the oxygen-dependent cycling of nutrients in the Peruvian oxygen minimum zone (OMZ). Model results and data for the present state of the OMZ indicate that dissolved iron is the limiting nutrient for primary production and is provided by the release of dissolved ferrous iron from shelf and slope sediments. Most of the removal of reactive nitrogen occurs by anaerobic oxidation of ammonium where ammonium is delivered by aerobic organic nitrogen degradation. Model experiments simulating the effects of ocean deoxygenation and warming show that the productivity of the Peruvian OMZ will increase due to the enhanced release of dissolved iron from shelf and slope sediments. A positive feedback loop rooted in the oxygen-dependent benthic iron release amplifies, both, the productivity rise and oxygen decline in ambient bottom waters. Hence, a 1% decline in oxygen supply reduces oxygen concentrations in sub-surface waters of the continental margin by 22%. The trend towards enhanced productivity and amplified deoxygenation will continue until further phytoplankton growth is limited by the loss of reactive nitrogen. Under nitrogen-limitation, the redox state of the OMZ is stabilized by negative feedbacks. A further increase in productivity and transition to sulfidic conditions is only possible if the rate of nitrogen fixation increases drastically under anoxic conditions. Such a transition would lead to a wide-spread accumulation of toxic sulfide with detrimental consequences for fishery yields in the Peruvian OMZ that currently provides a significant fraction of the global fish catch.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...