GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Applied Ecology, Wiley, Vol. 57, No. 1 ( 2020-01), p. 77-84
    Abstract: Successful detection of introduced marine pests (IMP) relies upon effective surveillance. However, the expedience of responding following IMP detection is often dependent upon the relationship between regulators and stakeholders. Effective detection of IMP in areas such as commercial ports requires a collaborative approach, as port environments can be highly complex both above and below the water. This complexity can encompass physical, logistical, safety and legislative issues. With this in mind, the aquatic pest biosecurity section within the Department of Primary Industries and Regional Development (DPIRD) developed the State‐Wide Array Surveillance Program (SWASP) in collaboration with Western Australian Port Authorities and port industry stakeholders. The SWASP is primarily based on passive settlement arrays for IMP detection. Arrays are deployed at strategic locations within Ports. Marine growth samples collected from the arrays are processed using Next‐Generation Sequencing (NGS) to identify the presence of IMP within a specific geographical location. Over 8 years, participation in SWASP has grown from 3 to 11 ports, spanning over 11,000 km, from the tropical north to temperate south of Western Australia. The programme has proven to be highly effective as a means of fostering stakeholder involvement and, importantly for IMP surveillance. The growth and success of SWASP has continued primarily because of the commitment and farsightedness of the ports involved. The regular presence of the biosecurity regulator as a partner in SWASP has provided a consistent face for biosecurity and fostered good stakeholder relationships, ensuring there is a reliable and effective ongoing marine surveillance programme for the state. Synthesis and applications. Through a united and collaborative approach to marine biosecurity surveillance, port authorities, industry and biosecurity regulators have developed the State‐Wide Array Surveillance Program (SWASP) and closed a major gap in biosecurity surveillance. The SWASP collaboration uses passive settlement arrays and molecular analyses to provide regular marine pest surveillance from the tropics to temperate regions of Western Australia. The continued commitment has embedded valuable relationships between stakeholder and regulator ensuring ongoing surveillance in marine biosecurity for the state. The Western Australian SWASP example has inspired other jurisdictions around Australia to develop similar collaborative approaches which will have far‐reaching marine biosecurity benefits.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Ecology, Wiley, Vol. 58, No. 3 ( 2021-03), p. 576-586
    Abstract: Cumulative impact assessment (CIA) is a promising approach to guide marine spatial planning (MSP) and management. One limitation of CIA is the neglect of seascape connectivity, which may spread the impact of localized pressures to ambient areas, e.g. through lost dispersal and recruitment of organisms. We here, for the first time, incorporate seascape connectivity into a traditional CIA model using a connectivity matrix, exemplified by dispersal of propagules estimated through biophysical modelling. Two connectivity impacts are identified: the source impact represents downstream areas losing recruits because of reduced larval dispersal from sites affected by the pressure, and the sink impact represents loss of recruits originating from upstream areas prevented from settlement in the site affected by the local pressure. By including seascape connectivity in the Swedish MSP‐guiding CIA tool Symphony we demonstrate how to practically account for remote effects of local environmental impact. Our example on blue mussel shows how reducing mussel fitness in a given area may have impacts on mussels far from the acting pressures. Overall, results indicate that connectivity impact for blue mussels plays a minor role in most areas, 〈 10% of the ordinary cumulative impact. However, in some smaller areas, e.g. on offshore banks and the Danish Straits, seascape connectivity may increase ordinary cumulative impact with 20%–30%. In an example of scenario‐based CIA analyses of MSP projections, we demonstrate how impacts of particular management actions, e.g. shipping rerouting and wind power developments, can be tracked far from the original area of influence. Depending on the dispersal ability of ecosystem components, a local pressure may impact a considerable area through seascape connectivity, transgressing management units and national borders. Although the mean connectivity impact may be modest for a single ecosystem component, the consideration of seascape connectivity across multiple ecosystem components may significantly alter the mapping of cumulative impact and the assessment of different MSP scenarios. Synthesis and applications . Our extension of Cumulative Impact Assessment offers a new method for mapping and practically integrating seascape connectivity with ecosystem‐based MSP and other spatial instruments for policy making, such as marine protected areas.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: ICES Journal of Marine Science, Oxford University Press (OUP), ( 2023-09-21)
    Abstract: Environmental DNA (eDNA) metabarcoding is a method to detect taxa from environmental samples. It is increasingly used for marine biodiversity surveys. As it only requires water collection, eDNA metabarcoding is less invasive than scientific trawling and might be more cost effective. Here, we analysed data from both sampling methods applied in the same scientific survey targeting Northeast Atlantic fish in the Bay of Biscay. We compared the methods regarding the distribution of taxonomic, phylogenetic, and functional diversity. We found that eDNA captured more taxonomic and phylogenetic richness than bottom trawling and more functional richness at the local scale. eDNA was less selective than trawling and detected species in local communities spanning larger phylogenetic and functional breadths, especially as it detected large pelagic species that escaped the trawl, even though trawling detected more flat fish. eDNA indicated differences in fish community composition that were comparable to those based on trawling. However, consistency between abundance estimates provided by eDNA metabarcoding and trawl catches was low, even after accounting for allometric scaling in eDNA production. We conclude that eDNA metabarcoding is a promising method that can complement scientific trawling for multi-component biodiversity monitoring based on presence/absence, but not yet for abundance.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Ecological Modelling, Elsevier BV, Vol. 483 ( 2023-09), p. 110444-
    Type of Medium: Online Resource
    ISSN: 0304-3800
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 191971-4
    detail.hit.zdb_id: 2000879-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Sustainable Food Systems, Frontiers Media SA, Vol. 7 ( 2023-5-19)
    Abstract: National and global priorities are increasingly focused on the concurrent marine fisheries challenges of food security, illegal fishing, and declining fisheries resources. Molecular genetics and electronic monitoring technologies can advance solutions to these challenges, particularly in fisheries surveillance and seafood traceability, and a growing number of studies continues to validate the utility of these tools. What is needed next is guidance to support their wider, more conventional adoption and implementation, either complementary to or in the absence of government policies. Here, we synthesize discussion held during the Borchard Foundation Colloquium held in July 2022 in Missillac, France on modernizing global fisheries with emerging technologies. Our aim is to provide perspectives to scientists, resource managers, and policy makers of emerging monitoring technologies, summarize the utility of these technologies in fisheries, and conclude with how the objective to modernize global marine fisheries is a prime opportunity to engage fresh talent in a new era of fisheries innovation.
    Type of Medium: Online Resource
    ISSN: 2571-581X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2928540-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2024
    In:  ICES Journal of Marine Science ( 2024-05-10)
    In: ICES Journal of Marine Science, Oxford University Press (OUP), ( 2024-05-10)
    Abstract: After three decades of working as a research scientist, I am stepping back to consider the events, questions, and principles that have guided my scientific journey. Important questions and research objectives have been how to implement the ecosystem approach to fisheries management in practice, the development of new data uses, the application of new observation methods and models, and estimating and accounting for uncertainty. Stakeholder engagement—why and how—is a topic that has increased in importance over time. While our observation methods did not change much over many decades, they are now changing rapidly due to new technological developments, but also societal and environmental changes.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  ICES Journal of Marine Science Vol. 79, No. 2 ( 2022-03-10), p. 413-422
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 79, No. 2 ( 2022-03-10), p. 413-422
    Abstract: We present practical lessons learned from applying the recent close-kin mark–recapture (CKMR) abundance estimation method to thornback ray (Raja clavata). For CKMR, related individuals are identified from their genotypes and their number and pattern is used for abundance estimation. We genotyped over 7000 individuals collected in the Bay of Biscay using Single Nucleotide Polymorphism (SNP) markers finding 99 parent–offspring pairs. The estimated number of adult thornback rays in the central Bay of Biscay was around 135000 (CV 0.19) in 2013. In total, four lessons were drawn: (i) CKMR helps identifying metapopulation structure, which if ignored might affect abundance estimates and/or time trends. There was strong evidence for two distinct local populations of thornback ray with no demographic connectivity. (ii) Demographic sample composition can affect precision and needs to include a range of birth years, which turned out to be difficult for thornback ray. (iii) Reasonable age information for potential offspring is essential. (iv) The sex of potential parents is needed and might be identified from sex-related SNPs. Reliable abundance estimation by CKMR appears feasible for a wide range of species provided that: sampling adequately covers potential local population structure, has appropriate demographic composition, and the age of potential offspring is reasonably well-known.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 77, No. 7-8 ( 2020-12-01), p. 3153-3167
    Abstract: Ecosystem-based approaches are increasingly used in fisheries management to account for the direct trophic impacts of fish population harvesting. However, fisheries can also indirectly alter ecosystem structure and functioning, for instance via the provision of new feeding opportunities to marine predators. For instance, marine depredation, where predators feed on fishery catches on fishing gear, is a behaviour developed by many marine species globally. This behaviour can modify both the ecological role of predators and fisheries performance. Yet, these ecosystem-wide effects of depredation are rarely considered holistically. In this study, we explored different ways of incorporating depredation into an Ecopath trophic model. We assessed, through a subantarctic case study, how three alternative model structures can account for depredation effects on fishery catches, predator and non-commercial prey populations, as well as target fish stocks. While none adequately addresses all facets of depredation, the alternative models can to some extent capture how depredation can lead to increased fishing pressure on stocks. As structural specificities of Ecopath prevented us from representing other depredation effects such as provisioning effects for predator populations, we conclude this study with a set of guidance to effectively capture the complex effects of depredation in marine ecosystems and fisheries models.
    Type of Medium: Online Resource
    ISSN: 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Progress in Oceanography, Elsevier BV, Vol. 211 ( 2023-02), p. 102969-
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Reviews in Fish Biology and Fisheries Vol. 31, No. 4 ( 2021-12), p. 797-819
    In: Reviews in Fish Biology and Fisheries, Springer Science and Business Media LLC, Vol. 31, No. 4 ( 2021-12), p. 797-819
    Abstract: The benefits of physiological biomarkers, knowledge and concepts are well-established in fish and wildlife management as they confer the ability to understand mechanistic processes, identify cause-and-effect relationships, and develop predictive models. Although this approach is gaining momentum in the context of species conservation, the use of physiological biomarkers in exploited marine fish stock management and recovery plans remains relatively rare. Here, we present five essential issues to consider to implement physiological biomarkers in fisheries management: (i) choice of relevant biomarkers that have a well-known mechanistic basis, (ii) identification of species-specific biomarkers reflecting a meaningful timespan for management, (iii) selection of biomarkers compatible with data collection during routine scientific fisheries surveys, (iv) use of biomarkers as early-warning signals and complementary indicators of population-level changes in life history traits and (v) how physiological biomarkers may help to refine long-term population dynamic projections under climate change and management scenarios. Overall, if based on well-established mechanisms linked to individuals’ fitness, a focus on physiological biomarkers should help to better understand the mechanisms behind stock declines, changes in stock characteristics, and thus more efficiently manage marine fisheries and conserve populations. As this approach is transferable among species, locations, and times, the integration of physiological biomarkers in fisheries science has the potential to more broadly enhance assessments and management of fish stocks.
    Type of Medium: Online Resource
    ISSN: 0960-3166 , 1573-5184
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 30768-3
    detail.hit.zdb_id: 1498719-3
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...