GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • IOP Publishing  (5)
  • 2020-2024  (5)
  • 1
    In: Environmental Research Letters, IOP Publishing, Vol. 16, No. 12 ( 2021-12-01), p. 125009-
    Kurzfassung: Fire is one of the main anthropogenic drivers that threatens the Amazon. Despite the clear link between rainfall and fire, the spatial and temporal relationship between these variables is still poorly understood in the Amazon. Here, we stratified the Amazon basin according to the dry season onset/end and investigated its relationship with the spatio-temporal variation of fire. We used monthly time series of active fires from 2003 to 2019 to characterize the fire dynamics throughout the year and to identify the fire peak months. More than 50% (32 246) of the annual mean active fires occurred in the peak month. In 52% of the cells, the peaks occurred between August–September and in 48% between October–March, showing well-defined seasonal patterns related to spatio-temporal variation of the dry season. Fire peaks occurred in the last two months of the dry season in 67% of the cells and in 20% in the first month of the rainy season. The shorter the dry season, the more concentrated was the occurrence of active fires in the peak month, with a predominance above 70% in cells with a dry season between one and three months. We defined a Critical Fire Period by identifying the consecutive months that concentrated at least 80% of active fires in the year. This period included two to three months between January and March in the northwest, and in the far north it lasted up to seven months, ending in March–April. In the south, it varied between two and three months, starting in August. In the northeast, it was three to four months, between August and December. By quantifying the role of the dry season in driving fire seasonality across the Amazon basin, we provide recommendations to monitor fire dynamics that can support decision makers in management policies and measures to avoid environmentally or socially harmful fires.
    Materialart: Online-Ressource
    ISSN: 1748-9326
    Sprache: Unbekannt
    Verlag: IOP Publishing
    Publikationsdatum: 2021
    ZDB Id: 2255379-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Environmental Research Letters, IOP Publishing, Vol. 16, No. 7 ( 2021-07-01), p. 074004-
    Kurzfassung: Brazil is currently the largest contributor of land use and land cover change (LULCC) carbon dioxide net emissions worldwide, representing 17%–29% of the global total. There is, however, a lack of agreement among different methodologies on the magnitude and trends in LULCC emissions and their geographic distribution. Here we perform an evaluation of LULCC datasets for Brazil, including those used in the annual global carbon budget (GCB), and national Brazilian assessments over the period 2000–2018. Results show that the latest global HYDE 3.3 LULCC dataset, based on new FAO inventory estimates and multi-annual ESA CCI satellite-based land cover maps, can represent the observed spatial variation in LULCC over the last decades, representing an improvement on the HYDE 3.2 data previously used in GCB. However, the magnitude of LULCC assessed with HYDE 3.3 is lower than estimates based on MapBiomas. We use HYDE 3.3 and MapBiomas as input to a global bookkeeping model (bookkeeping of land use emission, BLUE) and a process-based Dynamic Global Vegetation Model (JULES-ES) to determine Brazil’s LULCC emissions over the period 2000–2019. Results show mean annual LULCC emissions of 0.1–0.4 PgC yr −1 , compared with 0.1–0.24 PgC yr −1 reported by the Greenhouse Gas Emissions Estimation System of land use changes and forest sector (SEEG/LULUCF) and by FAO in its latest assessment of deforestation emissions in Brazil. Both JULES-ES and BLUE now simulate a slowdown in emissions after 2004 (−0.006 and −0.004 PgC yr −2 with HYDE 3.3, −0.014 and −0.016 PgC yr −2 with MapBiomas, respectively), in agreement with the Brazilian INPE-EM, global Houghton and Nassikas book-keeping models, FAO and as reported in the 4th national greenhouse gas inventories. The inclusion of Earth observation data has improved spatial representation of LULCC in HYDE and thus model capability to simulate Brazil’s LULCC emissions. This will likely contribute to reduce uncertainty in global LULCC emissions, and thus better constrains GCB assessments.
    Materialart: Online-Ressource
    ISSN: 1748-9326
    Sprache: Unbekannt
    Verlag: IOP Publishing
    Publikationsdatum: 2021
    ZDB Id: 2255379-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Environmental Research Letters, IOP Publishing, Vol. 15, No. 11 ( 2020-11-01), p. 114023-
    Kurzfassung: Wildfires in humid tropical forests have become more common in recent years, increasing the rates of tree mortality in forests that have not co-evolved with fire. Estimating carbon emissions from these wildfires is complex. Current approaches rely on estimates of committed emissions based on static emission factors through time and space, yet these emissions cannot be assigned to specific years, and thus are not comparable with other temporally-explicit emission sources. Moreover, committed emissions are gross estimates, whereas the long-term consequences of wildfires require an understanding of net emissions that accounts for post-fire uptake of CO 2 . Here, using a 30 year wildfire chronosequence from across the Brazilian Amazon, we calculate net CO 2 emissions from Amazon wildfires by developing statistical models comparing post-fire changes in stem mortality, necromass decomposition and vegetation growth with unburned forest plots sampled at the same time. Over the 30 yr time period, gross emissions from combustion during the fire and subsequent tree mortality and decomposition were equivalent to 126.1 Mg CO 2 ha −1 of which 73% (92.4 Mg CO 2 ha −1 ) resulted from mortality and decomposition. These emissions were only partially offset by forest growth, with an estimated CO 2 uptake of 45.0 Mg ha −1 over the same time period. Our analysis allowed us to assign emissions and growth across years, revealing that net annual emissions peak 4 yr after forest fires. At present, Brazil’s National Determined Contribution (NDC) for emissions fails to consider forest fires as a significant source, even though these are likely to make a substantial and long-term impact on the net carbon balance of Amazonia. Considering long-term post-fire necromass decomposition and vegetation regrowth is crucial for improving global carbon budget estimates and national greenhouse gases (GHG) inventories for tropical forest countries.
    Materialart: Online-Ressource
    ISSN: 1748-9326
    Sprache: Unbekannt
    Verlag: IOP Publishing
    Publikationsdatum: 2020
    ZDB Id: 2255379-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    IOP Publishing ; 2024
    In:  Environmental Research Letters Vol. 19, No. 3 ( 2024-03-01), p. 034047-
    In: Environmental Research Letters, IOP Publishing, Vol. 19, No. 3 ( 2024-03-01), p. 034047-
    Kurzfassung: The Brazilian Atlantic Forest (AF) covers 13% of Brazil but retains only 26% of its original forest area. Utilizing a Morphological Spatial Pattern Analysis (MSPA), we generated 30 m spatial resolution fragmentation maps for old-growth and secondary forests across the AF. We quantified landscape fragmentation patterns and carbon (C) dynamics over 35 years using MapBiomas data between the years 1985 and 2020. We found that from 1985 to 2020 the forest suffered continuous fragmentation, losing core (nuclei forest fragments) and bridge (areas that connect different core areas) components of the landscape. About 87.5% (290 468.4 km 2 ) of the remaining forest lacked core areas, with bridges (38.0%) and islets (small, isolated fragments) (35.4%) being predominant. Secondary forests (1986–2020) accounted for 99 450.5 km 2 and played a significant role in fragmentation pattern, constituting 44.9% of the areas affected by edge effects (perforation, edge, bridge, and loop), 53.7% of islets, and comprising only 1.4% of core forest. Additionally, regeneration by secondary forests contributed to all fragmentation classes in 2020. Even with the regrowth of forests, the total forested area in the biome did not increase between 1985 and 2020. Deforestation emissions reached 818 Tg CO 2 , closely paralleled by edge effects emissions at 810 Tg CO 2 , highlighting a remarkable parity in C emissions between the two processes. Despite slow changes, AF biome continues to lose its C stocks. We estimated that around 1.96 million hectares (19 600 km 2 ) of regenerated forest would be required to offset the historical C emissions over the analysed period. Hence, MSPA can support landscape monitoring, optimizing natural or active forest regeneration to reduce fragmentation and enhance C stocks. Our study’s findings are critical for guiding land-use policies focusing on minimizing emissions, promoting forest regrowth, and monitoring its permanence. This study offers biome scale, spatially explicit information, critical for AF conservation and management.
    Materialart: Online-Ressource
    ISSN: 1748-9326
    Sprache: Unbekannt
    Verlag: IOP Publishing
    Publikationsdatum: 2024
    ZDB Id: 2255379-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Environmental Research Letters, IOP Publishing, Vol. 15, No. 12 ( 2020-12-01), p. 121003-
    Materialart: Online-Ressource
    ISSN: 1748-9326
    Sprache: Unbekannt
    Verlag: IOP Publishing
    Publikationsdatum: 2020
    ZDB Id: 2255379-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...