GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(7), (2020): e2020JC016185, doi:10.1029/2020JC016185.
    Description: As mass loss from the Greenland Ice Sheet accelerates, this modeling study considers how meltwater inputs to the ocean can impact marine ecosystems using a simplified fjord scenario. At marine‐terminating glaciers in Greenland fjords, meltwater can be delivered far below the sea surface, both as subglacial runoff (from atmosphere‐driven surface melt) and as basal melt (from ocean heat). Such delivery can result in buoyancy‐driven upwelling and the upward entrainment of nutrient‐rich deep water, which can support phytoplankton growth in fjord surface waters. For this study, we use an idealized fjord‐scale model to investigate which properties of glaciers and fjords govern the transport of buoyantly upwelled nutrients from fjords. We model the influence of fjord geometry, hydrology, wind, tides, and phytoplankton growth within the fjord on meltwater‐driven nutrient export to the ocean. We use the Regional Ocean Modeling System (ROMS) coupled to a buoyant plume model and a biogeochemical model to simulate physical and biogeochemical processes within an idealized tidewater glacial fjord. Results show that meltwater‐driven nutrient export increases with larger subglacial discharge rates and deeper grounding lines, features that are both likely to change with continued ice sheet melting. Nutrient export decreases with longer residence times, allowing greater biological drawdown. While the absence of a coastal current in the model setup prevents the downstream advection of exported nutrients, results suggest that shelf‐forced flows could influence nutrient residence time within fjords. This simplified model highlights key uncertainties requiring further observation to understand ecological impacts of Greenland mass loss.
    Description: This project was supported by a University of Georgia Presidential Scholarship and NSF Graduate Research Fellowship (GRFP) (to HO), NASA‐IDS NNX14AD98G, and by NASA Physical Oceanography program (80NSSC18K0766).
    Description: 2020-12-22
    Keywords: Fjord circulation ; Subglacial discharge plumes ; Nutrient export ; Greenland marine‐terminating glaciers ; Biogeochemical cycling ; Primary productivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.
    Description: This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G).
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Dataset: INSPIRE 1-D ROMS model output
    Description: 1-D vertical mixing/biogeochemical Regional Ocean Modeling System (ROMS) output of October 2010 - March 2011 of the Amundsen Sea Polynya, modeled at twelve bloom stations. Data are 3-hourly averages, and saved in NetCDF files. In the NetCDF files, data are distributed over a 6x6 grid with 30 depths (ranging from the surface down to 210 m, with higher resolution near the surface). ocean_avg.nc files are the standard model output, while files named ocean_avg_sensitivity_lowWW.nc are from runs using a lower winter water initial dissolved iron concentration. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765252
    Description: NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443657, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443604, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443315, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443569
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: Numerous coastal polynyas fringe the Antarctic continent and strongly influence the productivity of Antarctic shelf systems. Of the 46 Antarctic coastal polynyas documented in a recent study, the Amundsen Sea Polynya (ASP) stands out as having the highest net primary production per unit area. Incubation experiments suggest that this productivity is partly controlled by the availability of dissolved iron (dFe). As a first step toward understanding the iron supply of the ASP, we introduce four plausible sources of dFe and simulate their steady spatial distribution using conservative numerical tracers. The modeled distributions replicate important features from observations including dFe maxima at the bottom of deep troughs and enhanced concentrations near the ice shelf fronts. A perturbation experiment with an idealized drawdown mimicking summertime biological uptake and subsequent resupply suggests that glacial meltwater and sediment-derived dFe are the main contributors to the prebloom dFe inventory in the top 100 m of the ASP. The sediment-derived dFe depends strongly on the buoyancy-driven overturning circulation associated with the melting ice shelves (the “meltwater pump”) to add dFe to the upper 300 m of the water column. The results support the view that ice shelf melting plays an important direct and indirect role in the dFe supply and delivery to polynyas such as the ASP. The data are from a numerical model simulating the sea ice and ocean conditions in the Amundsen Sea over the period Jan. 1, 2006 to Dec. 31, 2013. The data files provide the daily averaged model fields during this period. The numerical model and experiment are thoroughly described in St-Laurent et al., J. Geophys. Res. Oceans, doi:10.1002/2017jc013162.
    Description: NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443657 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443604 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443315 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443569
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Dataset: AN10-12 Surface pCO2 and Chl a
    Description: Surface pCO2, bottle-corrected Chl a, and shipboard wind speed from three cruises conducted off the Northeast coast of Brazil in the Amazon River Plume as part of the ANACONDAS project. Cruise AN10 took place on R/V Knorr (KN197-08) from May-June 2010; cruise AN11 took place on R/V Melville (MV1110) from September-October 2011; and cruise AN12 took place on R/V Atlantis (AT21-04) during July 2012. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/849870
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0934095, Gordon and Betty Moore Foundation: Marine Microbiology Initiative (MMI) GBMF2293, Gordon and Betty Moore Foundation: Marine Microbiology Initiative (MMI) GBMF2928, NSF Division of Ocean Sciences (NSF OCE) OCE-1133277
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...