GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (4)
  • 1
    Publication Date: 2022-11-01
    Description: The pelagic ecosystem of the Arctic Ocean is threatened by severe changes such as the reduction in sea‐ice coverage and increased inflow of warmer Atlantic water. The latter is already altering the zooplankton community, highlighting the need for monitoring studies. It is therefore essential to accelerate the taxonomic identification to speed up sample analysis, and to expand the analysis to biomass and size assessments, providing data for modeling efforts. Our case study in Fram Strait illustrates that image‐based analyses with the ZooScan provide abundance data and taxonomic resolutions that are comparable to microscopic analyses and are suitable for zooplankton monitoring purposes in the Arctic. We also show that image analysis allows to differentiate developmental stages of the key species Calanus spp. and Metridia longa and, thus, to study their population dynamics. Our results emphasize that older preserved samples can be successfully reanalyzed with ZooScan. To explore the applicability of image parameters for calculating total mesozooplankton and Calanus spp. biomasses, we used (1) conversion factors (CFs) translating wet mass to dry mass (DM), and (2) length–mass (LM) relationships. For Calanus spp., the calculated biomass values yielded similar results as direct DM measurements. Total mesozooplankton biomass ranged between 1.6 and 15 (LM) or 2.4 and 21 (CF) g DM m², respectively, which corresponds to previous studies in Fram Strait. Ultimately, a normalized biomass size spectra analysis provides 1st insights into the mesozooplankton size structure at different depths, revealing steep slopes in the linear fit in communities influenced by Atlantic water inflow.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:577.7
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-22
    Description: The pelagic ecosystem of the Arctic Ocean is threatened by severe changes such as the reduction in sea-ice coverage and increased inflow of warmer Atlantic water. The latter is already altering the zooplankton community, highlighting the need for monitoring studies. It is therefore essential to accelerate the taxonomic identification to speed up sample analysis, and to expand the analysis to biomass and size assessments, providing data for modeling efforts. Our case study in Fram Strait illustrates that image-based analyses with the ZooScan provide abundance data and taxonomic resolutions that are comparable to microscopic analyses and are suitable for zooplankton monitoring purposes in the Arctic. We also show that image analysis allows to differentiate developmental stages of the key species Calanus spp. and Metridia longa and, thus, to study their population dynamics. Our results emphasize that older preserved samples can be successfully reanalyzed with ZooScan. To explore the applicability of image parameters for calculating total mesozooplankton and Calanus spp. biomasses, we used (1) conversion factors (CFs) translating wet mass to dry mass (DM), and (2) length–mass (LM) relationships. For Calanus spp., the calculated biomass values yielded similar results as direct DM measurements. Total mesozooplankton biomass ranged between 1.6 and 15 (LM) or 2.4 and 21 (CF) g DM m−2, respectively, which corresponds to previous studies in Fram Strait. Ultimately, a normalized biomass size spectra analysis provides 1st insights into the mesozooplankton size structure at different depths, revealing steep slopes in the linear fit in communities influenced by Atlantic water inflow.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-07
    Description: The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rabe, B., Heuze, C., Regnery, J., Aksenov, Y., Allerholt, J., Athanase, M., Bai, Y., Basque, C., Bauch, D., Baumann, T. M., Chen, D., Cole, S. T., Craw, L., Davies, A., Damm, E., Dethloff, K., Divine, D., Doglioni, F., Ebert, F., Fang, Y-C., Fer, I., Fong, A. A., Gradinger, R., Granskog, M. A., Graupner, R., Haas, C., He, H., He, Y., Hoppmann, M., Janout, M., Kadko, D., Kanzow, T., Karam, S., Kawaguchi, Y., Koenig, Z., Kong, B., Krishfield, R. A., Krumpen, T., Kuhlmey, D., Kuznetsov, I., Lan, M., Laukert, G., Lei, R., Li, T., Torres-Valdés, S., Lin, L,. Lin, L., Liu, H., Liu, N., Loose, B., Ma, X., MacKay, R., Mallet, M., Mallett, R. D. C., Maslowski, W., Mertens, C., Mohrholz, V., Muilwijk, M., Nicolaus, M., O’Brien, J. K., Perovich, D., Ren, J., Rex, M., Ribeiro, N., Rinke, A., Schaffer, J., Schuffenhauer, I., Schulz, K., Shupe, M. D., Shaw, W., Sokolov, V., Sommerfeld, A., Spreen, G., Stanton, T., Stephens, M., Su, J., Sukhikh, N., Sundfjord, A., Thomisch, K., Tippenhauer, S., Toole, J. M., Vredenborg, M., Walter, M., Wang, H., Wang, L., Wang, Y., Wendisch, M., Zhao, J., Zhou, M., & Zhu, J. Overview of the MOSAiC expedition: physical oceanography. Elementa: Science of the Anthropocene, 10(1), (2022): 1, https://doi.org/10.1525/elementa.2021.00062.
    Description: Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
    Description: The following projects and funding agencies contributed to this work: Why is the deep Arctic Ocean Warming is funded by the Swedish Research Council, project number 2018-03859, and berth fees for this project were covered by the Swedish Polar Research Secretariat; The Changing Arctic Ocean (CAO) program, jointly funded by the United Kingdom Research and Innovation (UKRI) Natural Environment Research Council (NERC) and the Bundesministerium für Bildung und Forschung (BMBF), in particular, the CAO projects Advective Pathways of nutrients and key Ecological substances in the ARctic (APEAR) grants NE/R012865/1, NE/R012865/2, and #03V01461, and the project Primary productivity driven by Escalating Arctic NUTrient fluxeS grant #03F0804A; The Research Council of Norway (AROMA, grant no 294396; HAVOC, grant no 280292; and CAATEX, grant no 280531); Collaborative Research: Thermodynamics and Dynamic Drivers of the Arctic Sea Ice Mass Budget at Multidisciplinary drifting Observatory for the Study of the Arctic Climate; National Science Foundation (NSF) projects 1723400, Stanton; OPP-1724551, Shupe; The Helmholtz society strategic investment Frontiers in Arctic Marine monitoring (FRAM); Deutsche Forschungsgemeinschaft (German Research Foundation) through the Transregional Collaborative Research Centre TRR 172 “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” (grant 268020496); The Japan Society for the Promotion of Science (grant numbers JP18H03745, JP18KK0292, and JP17KK0083) and the COLE grant of U. Tokyo; National Key Research and Development Plan Sub-Project of Ministry of Science and Technology of China (2016YFA0601804), “Simulation, Prediction and Regional Climate Response of Global Warming Hiatus”, 2016/07-2021/06; National Science Foundation grant number OPP-1756100 which funded two of the Ice-Tethered Profilers and all the Ice-Tethered Profiler deployments; Chinese Polar Environmental Comprehensive Investigation and Assessment Programs, funded by the Chinese Arctic and Antarctic Administration; Marine Science and Technology Fund of Shandong Province for Qingdao National Laboratory for Marine Science and Technology (Grant: 2018SDKJ0104-1) and Chinese Natural Science Foundation (Grant: 41941012); UK NERC Long-term Science Multiple Centre National Capability Programme “North Atlantic Climate System Integrated Study (ACSIS)”, grant NE/N018044/1; The London NERC Doctoral Training Partnership grant (NE/L002485/1) which funded RDCM; NSF grant number OPP-1753423, which funded the 7Be tracer –measurements; and The Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) through its projects: AWI_OCEAN, AWI_ROV, AWI_ICE, AWI_SNOW, AWI_ECO, AWI_ATMO, and AWI_BGC.
    Keywords: Physical oceanography ; MOSAiC ; Arctic ; Coupled ; Drift ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-08
    Description: 〈jats:p〉Bowhead whales (〈jats:italic〉Balaena mysticetus〈/jats:italic〉) of the East Greenland-Svalbard-Barents Sea (Spitsbergen) population are still considered endangered, but knowledge on spatio-temporal distribution patterns and behavioral aspects remains scarce, yet crucial for this population’s conservation. Long-term passive acoustic recordings were collected at five locations in central and eastern Fram Strait (78-79°N, 0-7°E) as part of the Ocean Observing System FRAM (Frontiers in Arctic Marine Monitoring). Data recorded in 2012 and 2016/2017 were analyzed for the acoustic occurrence of bowhead whales at hourly resolution using a combination of automated and manual analyses. Bowhead whales were acoustically present from autumn throughout the winter months (October-February) and occasionally in spring (March-June), supporting hypotheses that Fram Strait is an important overwintering area. Acoustic presence peaked between mid-November and mid-December with bowhead whale calls recorded almost daily, often hourly for several consecutive days. The observed peak in acoustic presence coincided with the presumed mating period of bowhead whales, starting in late winter, indicating that Fram Strait may also serve as a mating area. Detailed analyses of recordings of a single year and location revealed eight distinct bowhead whale song types, comprising simple songs and call sequences. No bowhead whales were recorded in summer (July-September), indicating that they had migrated to summering areas or resided outside the detection range. Compared to previous studies in western Fram Strait, bowhead whale detections in our recordings were less frequent and recorded songs were less complex. The observed regional differences in bowhead whale acoustic behavior across Fram Strait suggest that eastern Fram Strait may represent a less favorable part of the bowhead whale overwintering area.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...