GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (7)
Document type
Years
Year
  • 1
    Publication Date: 2022-04-07
    Description: In times of accelerating climate change, species are challenged to respond to rapidly shifting environmental settings. Yet, faunal distribution and composition are still scarcely known for remote and little explored seas, where observations are limited in number and mostly refer to local scales. Here, we present the first comprehensive study on Eurasian-Arctic macrobenthos that aims to unravel the relative influence of distinct spatial scales and environmental factors in determining their large-scale distribution and composition patterns. To consider the spatial structure of benthic distribution patterns in response to environmental forcing, we applied Moran’s eigenvector mapping (MEM) on a large dataset of 341 samples from the Barents, Kara and Laptev Seas taken between 1991 and 2014, with a total of 403 macrobenthic taxa (species or genera) that were present in ≥ 10 samples. MEM analysis revealed three spatial scales describing patterns within or beyond single seas (broad: ≥ 400 km, meso: 100–400 km, and small: ≤ 100 km). Each scale is associated with a characteristic benthic fauna and environmental drivers (broad: apparent oxygen utilization and phosphate, meso: distance-to-shoreline and temperature, small: organic carbon flux and distance-to-shoreline). Our results suggest that different environmental factors determine the variation of Eurasian-Arctic benthic community composition within the spatial scales considered and highlight the importance of considering the diverse spatial structure of species communities in marine ecosystems. This multiple-scale approach facilitates an enhanced understanding of the impact of climate-driven environmental changes that is necessary for developing appropriate management strategies for the conservation and sustainable utilization of Arctic marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-26
    Description: Data on marine biota exist in many formats and sources, such as published literature, data repositories, and unpublished material. Due to this heterogeneity, information is difficult to find, access and combine, severely impeding its reuse for further scientific analysis and its long-term availability for future generations. To address this challenge, we present CRITTERBASE, a publicly accessible data warehouse and interactive portal that currently hosts quality-controlled and taxonomically standardized presence/absence, abundance, and biomass data for 18,644 samples and 3,664 benthic taxa (2,824 of which at species level). These samples were collected by grabs, underwater imaging or trawls in Arctic, North Sea and Antarctic regions between the years 1800 and 2014. Data were collated from literature, unpublished data, own research and online repositories. All metadata and links to primary sources are included. We envision CRITTERBASE becoming a valuable and continuously expanding tool for a wide range of usages, such as studies of spatio-temporal biodiversity patterns, impacts and risks of climate change or the evidence-based design of marine protection policies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-04
    Description: In times of rapidly increasing multiple anthropogenic impacts on polar marine ecosystems and biodiversity, understanding, sustainable-use management and protection of these biotas is a matter of great concern. Research on marine biotas and their interactions with each other and the environment is fundamental in that regard, but available data are still diverse and scattered, as they exist in many formats and sources, such as published literature, data repositories, and unpublished material. Due to this heterogeneity, information is difficult to find, access and combine, severely impeding its reuse for further scientific analysis and its long-term availability for future generations. Scientists, decision makers, and the public require a versatile tool to compile, synthesize and manage biodiversity data in a transparent, efficient and comprehensible way and with high-level quality assurance. To address this challenge, we developed, implemented and utilize CRITTERBASE (https://critterbase.awi.de), a publicly accessible data warehouse and interactive portal that complies with the FAIR principles (Findability, Accessibility, Interoperability and Reusability of data). Its purpose is to complement long-term data storage repositories by providing powerful but easy-to-use data ingest, retrieval and exploration tools, thus facilitating the analysis of biodiversity data across multiple spatial and temporal scales and in wider contexts. Currently, it hosts quality-controlled and taxonomically standardized presence/absence, abundance, and biomass data from Arctic, North Sea and Antarctic regions, collated from the literature, unpublished data, own research and online repositories (with all metadata and links to primary sources included), for 3,173 polar benthic taxa (2,444 of which at species level) from 12,209 samples collected with grabs, underwater imaging or trawls between 1800 and 2014. CRITTERBASE is currently holding benthic biodiversity data only but because of its comprehensive and flexible data model it is suited to include information about further biotas and habitats. Therefore, we envision it becoming a valuable and continuously expanding tool for a wide range of usages, such as studies of spatio-temporal biodiversity patterns, impacts and risks of climate change or the evidence-based design of marine protection policies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-09
    Description: In times of accelerating climate change, species are challenged to respond to rapidly shifting environmental settings. Yet, faunal distribution and composition are still scarcely known for remote and little explored seas, where observations are limited in number and mostly refer to local scales. Here, we present the first comprehensive study on Eurasian-Arctic macrobenthos that aims to unravel the relative influence of distinct spatial scales and environmental factors in determining their large-scale distribution and composition patterns. To consider the spatial structure of benthic distribution patterns in response to environmental forcing, we applied Moran’s eigenvector mapping (MEM) on a large dataset of 341 samples from the Barents, Kara and Laptev Seas taken between 1991 and 2014, with a total of 403 macrobenthic taxa (species or genera) that were present in ≥ 10 samples. MEM analysis revealed three spatial scales describing patterns within or beyond single seas (broad: ≥ 400 km, meso: 100–400 km, and small: ≤ 100 km). Each scale is associated with a characteristic benthic fauna and environmental drivers (broad: apparent oxygen utilization and phosphate, meso: distance-to-shoreline and temperature, small: organic carbon flux and distance-to-shoreline). Our results suggest that different environmental factors determine the variation of Eurasian-Arctic benthic community composition within the spatial scales considered and highlight the importance of considering the diverse spatial structure of species communities in marine ecosystems. This multiple-scale approach facilitates an enhanced understanding of the impact of climate-driven environmental changes that is necessary for developing appropriate management strategies for the conservation and sustainable utilization of Arctic marine systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of the WGII to the 6th assessment report of the intergovernmental panel on climate change, IPCC AR6 WGII, Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of the WGII to the 6th assessment report of the intergovernmental panel on climate change, IPCC AR6 WGII, https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter02.pdf, Cambridge University Press, 5 p., pp. 22-26
    Publication Date: 2022-06-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-07
    Description: The Collector's App is a platform-independent (macOS, Linux and Windows) software written in Python. The Collector's App allows biological data to be quality-checked and stored in CRITTERBASE, which is a science-driven PostgreSQL data warehouse for marine biota. For further data processing and statistical analyses or modelling purposes, the respective data can be queried directly via SQL from your CRITTERBASE data warehouse.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Software , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...