GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (1)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, Y., He, X., Li, H., Zhang, T., Lei, F., Gu, H., & Anderson, D. M. Molecular identification and toxin analysis of Alexandrium spp. in the Beibu Gulf: first report of toxic A. tamiyavanichii in Chinese coastal waters. Toxins, 13(2), (2021): 161, https://doi.org/10.3390/toxins13020161.
    Description: The frequency of harmful algal blooms (HABs) has increased in China in recent years. Information about harmful dinoflagellates and paralytic shellfish toxins (PSTs) is still limited in China, especially in the Beibu Gulf, where PSTs in shellfish have exceeded food safety guidelines on multiple occasions. To explore the nature of the threat from PSTs in the region, eight Alexandrium strains were isolated from waters of the Beibu Gulf and examined using phylogenetic analyses of large subunit (LSU) rDNA, small subunit (SSU) rDNA, and internal transcribed spacer (ITS) sequences. Their toxin composition profiles were also determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). All eight strains clustered in the phylogenetic tree with A. pseudogonyaulax, A. affine, and A. tamiyavanichii from other locations, forming three well-resolved groups. The intraspecific genetic distances of the three Alexandrium species were significantly smaller than interspecific genetic distances for Alexandrium species. Beibu Gulf isolates were therefore classified as A. pseudogonyaulax, A. affine, and A. tamiyavanichii. No PSTs were identified in A. pseudogonyaulax, but low levels of gonyautoxins (GTXs) 1 to 5, and saxitoxin (STX) were detected in A. tamiyavanichii (a total of 4.60 fmol/cell). The extremely low level of toxicity is inconsistent with PST detection above regulatory levels on multiple occasions within the Beibu Gulf, suggesting that higher toxicity strains may occur in those waters, but were unsampled. Other explanations including biotransformation of PSTs in shellfish and the presence of other PST-producing algae are also suggested. Understanding the toxicity and phylogeny of Alexandrium species provides foundational data for the protection of public health in the Beibu Gulf region and the mitigation of HAB events.
    Description: This research was funded by the National Natural Science Foundation of China (41976155, 41506137), the Natural Science Foundation of Guangxi Province (2020GXNSFDA297001, 2016GXNSFBA380037), the Woods Hole Center for Oceans and Human Health (National Science Foundation grant OCE-1840381 and National Institutes of Health grants NIEHS-1P01-ES028938-01), the Opening Project of Guangxi Laboratory on the Study of Coral Reefs in the South China Sea (GXLSCRSCS2019002), the Opening Foundation of Key Laboratory of Environment Change and Resources Use in Beibu Gulf Ministry of Education (Nanning Normal University), and the Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Nanning Normal University) (GTEU-KLOP-K1803).
    Keywords: Alexandrium tamiyavanichii ; paralytic shellfish poisoning ; molecular identification ; toxicity ; harmful algal blooms ; Beibu Gulf
    Repository Name: Woods Hole Open Access Server
    Type: Book
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...