GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2023  (3)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    Copernicus Publications (EGU)
    In:  Geochronology, 2 (1). pp. 17-31.
    Publikationsdatum: 2022-01-07
    Beschreibung: The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation. Here, we apply a sediment accumulation model that simulates the sedimentation and bioturbation of millions of foraminifera, whereby realistic 14C activities (i.e. from a 14C calibration curve) are assigned to each single foraminifera based on its simulation time step. We find that the normal distribution of 14C age typically used to represent discrete-depth sediment intervals (based on the reported laboratory 14C age and measurement error) is unlikely to be a faithful reflection of the actual 14C age distribution for a specific depth interval. We also find that this deviation from the actual 14C age distribution is greatly amplified during the calibration process. Specifically, we find a systematic underestimation of total geochronological error in many cases (by up to thousands of years), as well as the generation of age–depth artefacts in downcore calibrated median age. Even in the case of “perfect” simulated sediment archive scenarios, whereby sediment accumulation rate (SAR), bioturbation depth, reservoir age and species abundance are all kept constant, the 14C measurement and calibration processes generate temporally dynamic median age–depth artefacts on the order of hundreds of years – whereby even high SAR scenarios (40 and 60 cm kyr−1) are susceptible. Such age–depth artefacts can be especially pronounced during periods corresponding to dynamic changes in the Earth's Δ14C history, when single foraminifera of varying 14C activity can be incorporated into single discrete-depth sediment intervals. For certain lower-SAR scenarios, we find that downcore discrete-depth true median age can systematically fall outside the calibrated age range predicted by the 14C measurement and calibration processes, thus leading to systematically inaccurate age estimations. In short, our findings suggest the possibility of 14C-derived age–depth artefacts in the literature. Furthermore, since such age–depth artefacts are likely to coincide with large-scale changes in global Δ14C, which themselves can coincide with large-scale changes in global climate (such as the last deglaciation), 14C-derived age–depth artefacts may have been previously incorrectly attributed to changes in SAR coinciding with global climate. Our study highlights the need for the development of improved deep-sea sediment 14C calibration techniques that include an a priori representation of bioturbation for multi-specimen samples.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-01-24
    Beschreibung: Although numerous pollen records are available worldwide in various databases, their use for synthesis works is limited as the chronologies are, as yet, not harmonized globally, and temporal uncertainties are unknown. We present a chronology framework named LegacyAge 1.0 that includes harmonized chronologies of 2831 palynological records (out of 3471 available records), downloaded from the Neotoma Paleoecology Database (last access: April 2021) and 324 additional Asian records. All chronologies use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors (accumulation.shape, memory.strength, memory.mean, accumulation.rate, thickness) were identified based on previous experiences or iteratively after preliminary model inspection. The most common control points for the chronologies are radiocarbon dates (86.1 %), calibrated by the latest calibration curves (IntCal20 and SHcal20 for the terrestrial radiocarbon dates in the northern and southern hemispheres; Marine20 for marine materials). The original literature was consulted when dealing with obvious outliers and inconsistencies. Several major challenges when setting up the chronologies included the waterline issue (18.8 % of records), reservoir effect (4.9 %), and sediment deposition discontinuity (4.4 %). Finally, we numerically compare the LegacyAge 1.0 chronologies to the original ones and show that the chronologies of 95.4 % of records could be improved according to our assessment. Our chronology framework and revised chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset and R code used are open-access and available at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.933132) and Github (https://github.com/LongtermEcology/LegacyAge-1.0), respectively.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-06-08
    Beschreibung: Marine sedimentary archives are routinely used to reconstruct past environmental changes. In many cases, bioturbation and sedimentary mixing affect the proxy time-series and the age-depth relationship. While idealized models of bioturbation exist, they usually assume homogeneous mixing, thus that a single sample is representative for the sediment layer it is sampled from. However, it is largely unknown to which extent this assumption holds for sediments used for paleoclimate reconstructions. To shed light on 1) the age-depth relationship and its full uncertainty, 2) the magnitude of mixing processes affecting the downcore proxy variations, and 3) the representativity of the discrete sample for the sediment layer, we designed and performed a case study on South China Sea sediment material which was collected using a box corer and which covers the last glacial cycle. Using the radiocarbon content of foraminiferal tests as a tracer of time, we characterize the spatial age-heterogeneity of sediments in a three-dimensional setup. In total, 118 radiocarbon measurements were performed on defined small- and large-volume bulk samples ( ∼ 200 specimens each) to investigate the horizontal heterogeneity of the sediment. Additionally, replicated measurements on small numbers of specimens (10 × 5 specimens) were performed to assess the heterogeneity within a sample volume. Visual assessment of X-ray images and a quantitative assessment of the mixing strength show typical mixing from bioturbation corresponding to around 10 cm mixing depth. Notably, our 3D radiocarbon distribution reveals that the horizontal heterogeneity (up to 1,250 years), contributing to the age uncertainty, is several times larger than the typically assumed radiocarbon based age-model error (single errors up to 250 years). Furthermore, the assumption of a perfectly bioturbated layer with no mixing underneath is not met. Our analysis further demonstrates that the age-heterogeneity might be a function of sample size; smaller samples might contain single features from the incomplete mixing and are thus less representative than larger samples. We provide suggestions for future studies, optimal sampling strategies for quantitative paleoclimate reconstructions and realistic uncertainty in age models, as well as discuss possible implications for the interpretation of paleoclimate records.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...