GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (5)
Document type
Publisher
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  EPIC3Journal of Climate, 33(22), pp. 9863-9881, ISSN: 0894-8755
    Publication Date: 2020-10-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-19
    Description: Different phytoplankton groups dominate ocean biomes and they drive differently the marine food web and the biogeochemical cycles. However, their distribution over most parts of the global ocean remains uncertain due to limitations in the sampling resolution of currently available in situ and satellite data. Information below surface waters are especially limited because satellite sensors only provide information on the first optical depth. We present measurements obtained during Polarstern cruise PS113 (May–June 2018) across the Atlantic Ocean from South America to Europe along numerous transects. We measured the hyperspectral underwater radiation field continuously over several hours from a vertical undulating platform towed behind the ship. Equivalent measurements were also taken at specific stations. The concentrations of phytoplankton pigments were determined on discrete water samples. Via diagnostic pigment analysis we derived the phytoplankton group chlorophyll a concentration (Chla) from this pigment data set. We obtained high resolution phytoplankton group Chla data from depth resolved apparent optical properties derived from the underwater radiation data by applying an empirical orthogonal function (EOF) analysis to the spectral data set and subsequently developing regression models using the pigment based phytoplankton group Chla and selected EOF modes. To our knowledge, this is the first data set with high horizontal coverage (50–150 km) and resolution (∼1 km) that is also resolved vertically for the Chla of major taxonomic phytoplankton groups. Subsampling with 500 permutations for cross validation verified the high robustness of our estimates to enable predictions of seven different phytoplankton groups’ Chla and of total Chla (R2 and median percent differences of the cross validation are within 0.45–0.68 and 29–53%, respectively). Our depth resolved phytoplankton groups’ Chla data reflect well the different biogeochemical provinces within the Atlantic Ocean transect and follow the distributions encountered by previous point observations. This verifies the high quality of our retrievals and provides the prospect to put similar radiometers on profiling floats or gliders which would enable the large-scale collection of vertically resolved phytoplankton data at much improved horizontal coverage relative to discrete sampling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-19
    Description: Abstract The Weddell Sea is of global importance in the formation of dense bottom waters associated with sea-ice formation and ocean-ice sheet interaction occurring on the shelf areas. In this context, the Weddell Sea boundary current system (BCS) presents a major conduit for transporting relatively warm water to the Weddell Sea ice shelves and for exporting some modified form of Wedell Sea deep and bottom waters into the open ocean. This study investigates the downstream evolution of the structure and the seasonality of the BCS along the Weddell Sea continental slope, combining ocean data collected for the past two decades at three study locations. The interannual-mean geostrophic flow, which follows planetary potential vorticity contours, shifts from being surface-intensified to bottom intensified along-stream. The shift occurs due to the densification of water masses and the decreasing surface stress that occurs westward, towards the Antarctic Peninsula. A coherent along-slope seasonal acceleration of the barotropic flow exists, with maximum speed in austral autumn and minimum speed in austral summer. The barotropic flow significantly contributes to the seasonal variability in bottom velocity along the tip of the Antarctic Peninsula. Our analysis suggests that the winds on the eastern/north-eastern side of the gyre determines the seasonal acceleration of the barotropic flow. In turn, they might control the export of Weddell Sea Bottom Water on seasonal time-scales. The processes controlling the baroclinic seasonality of the flow need further investigation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-13
    Description: The Weddell Sea is of global importance in the formation of dense bottom waters associated with sea ice formation and ocean-ice sheet interaction occurring on the shelf areas. In this context, the Weddell Sea boundary current system (BCS) presents a major conduit for transporting relatively warm water to the Weddell Sea ice shelves and for exporting some modified form of Wedell Sea deep and bottom waters into the open ocean. This study investigates the downstream evolution of the structure and the seasonality of the BCS along the Weddell Sea continental slope, combining ocean data collected for the past two decades at three study locations. The interannual-mean geostrophic flow, which follows planetary potential vorticity contours, shifts from being surface intensified to bottom intensified along stream. The shift occurs due to the densification of water masses and the decreasing surface stress that occurs westward, toward the Antarctic Peninsula. A coherent along-slope seasonal acceleration of the barotropic flow exists, with maximum speed in austral autumn and minimum speed in austral summer. The barotropic flow significantly contributes to the seasonal variability in bottom velocity along the tip of the Antarctic Peninsula. Our analysis suggests that the winds on the eastern/northeastern side of the gyre determines the seasonal acceleration of the barotropic flow. In turn, they might control the export of Weddell Sea Bottom Water on seasonal time scales. The processes controlling the baroclinic seasonality of the flow need further investigation.
    Keywords: 551.46 ; Southern Ocean ; Weddell Sea ; Antarctic slope current ; surface stress ; flow strength ; teleconnection
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...