GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (3)
Document type
Years
Year
  • 1
    Publication Date: 2021-08-04
    Description: In the central Arctic Ocean, dissolved rare earth element concentrations ([dREE]) and the neodymium (Nd) isotope compositions are constant throughout the deep water column (〉1,000 m water depth), indicating unique conditions among the ocean basins and therefore requiring an investigation of seawater-particle interactions. Here, we present the first high-resolution particulate REE and Nd isotope data from the Arctic Ocean and discuss the possible seawater-particle processes affecting the Arctic Ocean. Our results show that particulate [REE] are on the same order of magnitude as in other ocean basins, suggesting that particle composition is the main cause for a lack of pREE release to the dissolved pool. The lithogenic fraction dominates throughout the water column while the biogenic material contribution is very small. This paucity of biogenic material results in reduced particle-seawater exchanges of REEs and Nd isotopes. Moreover, we note only slight differences in the dissolved Nd isotope composition between the Eurasian and Canadian Basins. This is due to the different source regions supplying different dissolved and particulate Nd isotope signatures to both basins. The dissolved [REE] and Nd isotope composition of Atlantic waters are modified during their flow paths through contributions from the Kara Sea, lowering the salinity and increasing [dREE] and dNd isotope compositions. Hydrothermal influence from the Gakkel Ridge on dissolved and particulate [REE] and Nd isotopes could not be detected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-24
    Description: Primary production by phytoplankton represents a major pathway whereby atmospheric CO2 is sequestered in the ocean, but this requires iron, which is in scarce supply. As over 99% of iron is complexed to organic ligands, which increase iron solubility and microbial availability, understanding the processes governing ligand dynamics is of fundamental importance. Ligands within humic-like substances have long been considered important for iron complexation, but their role has never been explained in an oceanographically consistent manner. Here we show iron co-varying with electroactive humic substances at multiple open ocean sites, with the ratio of iron to humics increasing with depth. Our results agree with humic ligands composing a large fraction of the iron-binding ligand pool throughout the water column. We demonstrate how maximum dissolved iron concentrations could be limited by the concentration and binding capacity of humic ligands, and provide a summary of the key processes that could influence these parameters. If this relationship is globally representative, humics could impose a concentration threshold that buffers the deep ocean iron inventory. This study highlights the dearth of humic data, and the immediate need to measure electroactive humics, dissolved iron and iron-binding ligands simultaneously from surface to depth, across different ocean basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-08
    Description: Abstract A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river-influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high-resolution pan-Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600Â km horizontally and ~25-50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle-reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (10^6 m3 s-1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...