GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
Document type
Years
Year
  • 1
    Publication Date: 2020-02-27
    Description: Western Boundary Currents, such as the Gulf Stream, are regions of vivid air-sea interaction. Mesoscale features of these currents play a fundamental role in global ocean heat transport and exchange with the atmosphere. Related processes and their interactions across scales have gained increasing attention in the last years, since high-resolution, mesoscale-resolving modeling became computationally feasible on climate time scales. Here, we show the impact of explicitly resolving the oceanic mesoscale in the coupled global climate model FOCI on North Atlantic and European climate. For this purpose, we use the ocean nesting capability in FOCI, which facilitates regional ocean grid refinement. We explore and compare pre-industrial simulations each extending over at least 150 years: a reference run without any grid refinement and an experiment with a nest in the North Atlantic. Technically, the regional ocean nest maintains frequent two-way exchange with the global host grid, which in turn is fully coupled to the atmosphere model. The ocean model NEMO has a global resolution of 1/2˚ model with 46 vertical levels and 1/10˚ refinement in the nest region, while the atmosphere model ECHAM6 has a 1.8˚ horizontal resolution (T63) and 95 vertical levels, including the strato- and mesosphere. Within the nest region, the increased resolution leads to a more eddy-rich simulation and an improved mean state. The North Atlantic Current is considerably better represented, which reduces the typical North Atlantic cold bias from -8˚C in the reference run without nest to -2˚C. Beyond local bias correction of the mean state, we will also discuss the impact of explicitly modeling ocean mesoscale dynamics on atmospheric variability on different time scales, such as the North Atlantic Oscillation or the Atlantic Multidecadal Variability.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-18
    Description: We study how mesoscale air-sea interactions over the North Atlantic can influence weather extremes, e.g. heavy precipitation and wind storms, and the overall atmospheric circulation both locally and downstream in the midlatitudes. We use a global coupled climate model with a high-resolution North Atlantic grid (dx ~ 8 km) and an atmosphere model resolution of either 125 km or 25 km. The high-resolution North Atlantic grid allows the model to resolve the current systems and SST fronts associated with e.g. the Gulf Stream and North Atlantic Current. As air-sea fluxes of momentum, heat and freshwater are calculated on the atmosphere grid, spatial variations in fluxes associated with sharp SST fronts are much better represented when using the high-resolution atmosphere then when using the low-resolution model. Preliminary results show that coupling to the high-resolution (dx ~ 25 km) rather than low-resolution (dx ~ 125 km) atmosphere model increases the intensity and variance of surface heat and freshwater fluxes over eddy-rich regions such as the Gulf Stream. As a result, the high-resolution model simulates more intense heavy precipitation events over most of the North Atlantic Ocean. We also show that more frequent coupling between the atmosphere and ocean components increases the intensity of the air-sea fluxes, in particular wind stress, which has a large impact on the ocean. More intense air-sea fluxes can provide more energy for cyclogenesis and we will discuss how the oceanic mesoscale, in particular in the eddy-rich regions, can alter the storm tracks and jet stream to influence extreme weather and the climate over Europe. The coupled model comprises NEMO 3.6/LIM2 ocean and OpenIFS 40r1 atmosphere, and works by allowing the global OpenIFS model to send and receive fields from both a global coarse-resolution ocean grid and a refined grid over the North Atlantic grid via the OASIS3-MCT4 coupler. The ability to run these simulations is a very recent development and we will give a brief overview of the coupled modelling system and benefits of using regional grid refinement in coupled models.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...