GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    IASC
    In:  EPIC3IASC Workshop on the dynamics and mass budget of Arctic glaciers, Obergurgl, Austria, 2020-01-28-2020-01-30Obergurgl, Austria, IASC, 56 p.
    Publication Date: 2020-06-08
    Description: Kongsvegen is a well-studied surge-type glacier in the Kongsfjord area of northwest Svalbard. Long-term monitoring has shown that the ice surface velocity has been increasing for the past 4 years; presenting a unique opportunity to study the internal ice structure, basal conditions and thermal regime that play a crucial role in initiating glacier surges. In April 2019, three-component seismic vibroseis surveys were conducted at two sites on the glacier, using a small Electrodynamic Vibrator source (ElViS). Site 1 is in the ablation area and site 2 near the equilibrium line, where the greatest increase in ice surface velocity has been observed. Initial analysis indicates the conditions at the two sites are significantly different. At site 1 the ice is around 220 m thick, sitting on a relatively flat and uniform bed, with no clear change in the bed reflection along the profile. There is a horizontally layered sediment package ∼60 m thick underlaying the bed. The ice column shows no internal layering. By contrast at site 2 (Fig. 1), where the ice is around 390 m thick, there is much more complex internal ice structure. Clear internal ice reflections are visible between 150-250 m depth – where we expect a transition from cold to temperate ice. Further reflections in the 100 m above the bed indicate there could be shearing or sediment entrainment in this area. Below the bed, cross-cutting layers are clearly visible and the bed reflection itself shows changing reflection polarity – suggesting water or very wet sediment is present in some areas. This suggests ice movement by basal sliding and shearing is likely.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...