GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2022  (4)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    In:  [Talk] In: EGU General Assembly 2020, 03.05.-08.05.2020, Online .
    Publikationsdatum: 2021-05-04
    Beschreibung: We present a data assimilation algorithm for the time-domain spectral-finite element code VILMA. We consider a 1D earth structure and a prescribed glaciation history ICE5G for the external mass load forcing. We use the Parallel Data Assimilation Framework (PDAF) to assimilate sea level data into the model in order to obtain better estimates of the viscosity structure of mantle and lithosphere. For this purpose, we apply a particle filter in which an ensemble of models is propagated in time, starting shortly before the last glacial maximum. At epochs when observations are available, each particle's performance is estimated and they are resampled based on their performance to form a new ensemble that better resembles the true viscosity distribution. In a proof of concept we show that with this method it is possible to reconstruct a synthetic viscosity distribution from which synthetic data were constructed. In a second step, paleo sea level data are used to infer an optimised 1D viscosity distribution.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    In:  [Talk] In: EGU General Assembly 2020, 03.05.-08.05.2020, Online .
    Publikationsdatum: 2021-05-04
    Beschreibung: Glacial isostatic adjustment is dominated by Earth rheology resulting in a variability of relative sea-level (RSL) predictions of more than 100 meters during the last glacial cycle. Seismic tomography models reveal significant lateral variations in seismic wavespeed, most likely corresponding to variations in temperature and hence viscosity. Therefore, the replacement of 1D Earth structures by a 3D Earth structure is an essential part of recent research to reveal the impact of lateral viscosity contrasts and to achieve a more consistent view on solid-Earth dynamics. Here, we apply the VIscoelastic Lithosphere and MAntle model VILMA to predict RSL during the last deglaciation. We create an ensemble of geodynamically constrained 3D Earth structures which is based on seismic tomography models while considering a range of conversion factors to transfer seismic velocity variations into viscosity variations. For a number of globally distributed sites, we discuss the resulting variability in RSL predictions, compare this with regionally optimized 1D Earth structures, and validate the model results with relative sea-level data (sea-level indicators). This study is part of the German Climate Modeling initiative PalMod aiming the modeling of the last glacial cycle under consideration of a coupled Earth system model, i.e. including feedbacks between ice-sheets and the solid Earth.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-07-23
    Beschreibung: We present a compilation and analysis of 1099 Holocene relative shore-level (RSL) indicators locatedaround the Baltic Sea including 867 relative sea-level data points and 232 data points from the Ancylus Lake and the following transitional phase. The spatial distribution covers the Baltic Sea and near-coastal areas fairly well, but some gaps remain mainly in Sweden. RSL data follow the standardized HOLSEA format and, thus, are ready for spatially comprehensive applications in, e.g. glacial isostatic adjustment (GIA) modelling. We apply a SQL database system to store the nationally provided data sets in their individual form and to map the different input into the HOLSEA format as the information content of the individual data sets from the Baltic Sea area differs. About 80% of the RSL data is related to the last marine stage in Baltic Sea history after 8.5 ka BP (thousand years before present). These samples are grouped according to their dominant RSL tendencies into three clusters: regions with negative, positive and complex (transitional) RSL tendencies. Overall, regions with isostatic uplift driven negative tendencies dominate and show regression in the Baltic Sea basin during the last marine stage. Shifts from positive to negative tendencies in RSL data from transitional regions show a mid-Holocene highstand around 7.5 - 6.5 ka BP which is consistent with the end of the final melting of the Laurentide Ice Sheet. Comparisons of RSL data with GIA predictions including global ICE-5G and ICE-6G_C ice histories show goodfit withRSL data from the regions with negative tendencies, whereas in the transitional areas in the eastern Baltic, predictions for the mid-Holocene clearly overestimate the RSL and fail to recover the mid-Holocene RSL highstand derived from the proxy reconstructions. These results motivate improvements of ice-sheet and Earth-structure models and show the potential and benefits of the new compilation forfuture studies.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-07-01
    Beschreibung: Gravitationally consistent solutions of the Sea Level Equation from leakage‐corrected monthly‐mean GFZ RL06 Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‐On (GRACE‐FO) Stokes coefficients reveal that barystatic sea level averaged over the whole global ocean was rising by 1.72 mm a−1 during the period April 2002 until August 2016. This rate refers to a truely global ocean averaging domain that includes all polar and semienclosed seas. The result corresponds to 2.02 mm a−1 mean barystatic sea level rise in the open ocean with a 1,000 km coastal buffer zone as obtained from a direct spatial integration of monthly GRACE data. The bias of +0.3 mm a−1 is caused by below‐average barystatic sea level rise in close proximity to coastal mass losses induced by the smaller gravitational attraction of the remaining continental ice and water masses. Alternative spherical harmonics solutions from CSR, JPL, and TU Graz reveal open‐ocean rates between 1.94 and 2.08 mm a−1, thereby demonstrating that systematic differences among the processing centers are much reduced in the latest release. We introduce in this paper a new method to approximate spatial leakage from the differences of two differently filtered global gravity fields. A globally constant and time‐invariant scale factor required to obtain full leakage from those filter differences is found to be 3.9 for GFZ RL06 when filtered with DDK3, and lies between 3.9 and 4.4 for other processing centers. Spatial leakage is estimated for every month in terms of global grids, thereby providing also valuable information of intrabasin leakage that is potentially relevant for hydrologic and hydrometeorological applications.
    Beschreibung: Plain Language Summary: Satellite gravimetry as realized with the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‐On (GRACE‐FO) missions is measuring tiny variations in the Earth's gravity field that are directly caused by divergent horizontal mass transports such as the melting of ice sheets and the corresponding discharge of melt water into the ocean basins. Between April 2002 and August 2016, this mass inflow caused sea level to rise by 1.72 mm each year as quantified from the latest GRACE reprocessing performed at our institute. The indirect observation principle of GRACE limits the spatial resolution so that highly localized mass loss signals are smeared out into the larger surrounding area, and possibly even from land into the ocean. We propose here a new method to quantify this so‐called spatial leakage from the difference of gravity fields smoothed with slightly different spatial filters. A scale factor is obtained from exploiting the availability of two independent methods to estimate the mass component of sea level rise: The first method spatially integrates over the global gravity fields in all regions away from the coasts, and the second method utilizes a (leakage‐corrected) mass distribution over the continents to calculate the gravitationally consistent distribution of water masses in all ocean basins. We estimate this scale factor as 3.9.
    Beschreibung: Key Points: Mean barystatic sea level rise is biased high by 0.3 mm a−1 when estimated with a 1,000 km coastal buffer zone. Fractional spatial leakage in monthly GRACE gravity fields is quantified with two differently strong DDK filters. Fractional leakage is scaled by a factor of 3.9 to make results from the Sea Level Equation consistent with open‐ocean integrations.
    Beschreibung: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Beschreibung: European Union http://dx.doi.org/10.13039/501100000780
    Beschreibung: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): 526.7 ; time‐variable gravity ; barystatic sea level ; spatial leakage ; GRACE ; GRACE‐FO
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...